## Ashby diagrams



## Arrange the index

$$
\begin{aligned}
& I=\frac{A}{B} \longrightarrow \log (I)=\log (A)-\log (B) \\
& \log (A)=\log (B)+\log (I)
\end{aligned}
$$



## Resistance and stiffness in TRACTION and FLEXION mode

## *To Minimize the Mass*

$$
\begin{aligned}
m & =A \cdot L \cdot \rho \\
A & =\frac{m}{L \cdot \rho}
\end{aligned}
$$

Where $\mathrm{m}=$ mass
$\mathrm{A}=$ section area
$\mathrm{L}=$ length
$\rho=$ density
Understand the goal $\rightarrow$ Stiffness must be lower down limited (TO MASSIMIZE)
Resistance must superiorly be limited (TO HOLD UNDER A LIMIT)

## *To Minimize the Cost*

If the material price is $\mathrm{Cm} \$ / \mathrm{kg}$, the cost of the material to make a component of mass $m$ is just $\mathrm{mC}_{\mathrm{m}}$.
The objective function for the material cost C of the piece then becomes

$$
\mathrm{C}=\mathrm{m} \mathrm{C}_{\mathrm{m}}
$$

## Case : Beam under traction conditions

## Stiffness Optimization

$$
\begin{gathered}
\frac{F}{\delta} \geq S_{\min }=S \\
\frac{\mathrm{E} \cdot \mathrm{~A}}{\mathrm{~L}} \geq \mathrm{S} \rightarrow \frac{\mathrm{E} \cdot \mathrm{~m}}{L^{2} \cdot \rho} \geq \mathrm{S} \rightarrow \mathrm{~m} \geq \mathrm{S} \cdot \mathrm{~L}^{2} \cdot \frac{\rho}{\mathrm{E}} \\
\mathrm{M}=\frac{\mathrm{E}}{\rho} \\
\frac{\text { Resistance Optimization }}{} \\
\frac{\mathrm{F}}{\mathrm{~A}} \leq \sigma_{\mathrm{f}} \\
\frac{\mathrm{~F}}{\mathrm{~m} /(\mathrm{L} \cdot \rho)} \leq \sigma_{f} \rightarrow \mathrm{~m} \geq \mathrm{F} \cdot \mathrm{~L} \cdot \frac{\rho}{\sigma_{f}} \\
M=\frac{\sigma_{f}}{\rho}
\end{gathered}
$$

## Case : Beam under flexion conditions

## Stiffness Optimization

$$
\frac{F}{\delta} \geq S_{\min }=S
$$

$\mathrm{C}_{1} \cdot \frac{\mathrm{E} \cdot \mathrm{J}}{\mathrm{L}^{3}} \geq \mathrm{S}$, with $\mathrm{J}=\frac{\mathrm{b} \cdot \mathrm{w}^{3}}{12}$ [Moment of inertia, b width, w thickness ]

- For square beam $b=w, A=b^{2} \rightarrow J=\frac{A^{2}}{12}$
[ this hypothesis is correctalso if $b$ and $w$ are different but in proportion, as $b=C \cdot w$ ]

$$
\begin{gathered}
C_{1} \cdot \frac{E \cdot A^{2}}{12 \cdot L^{3}} \geq S \rightarrow \frac{m^{2}}{L^{2} \cdot \rho^{2}} \geq \frac{12 \cdot L^{3}}{C_{1} \cdot E} \cdot S \rightarrow m^{2} \geq \frac{12 \cdot L^{3}}{C_{1}} \cdot S \cdot \frac{L^{2} \cdot \rho^{2}}{E} \\
m \geq\left(\frac{12 \cdot S}{C_{1} \cdot L}\right)^{\frac{1}{2}} \cdot L^{3} \cdot \frac{\rho}{E^{\frac{1}{2}}}
\end{gathered}
$$

- For beam with width fixed and thickness variable (= panel), $\mathrm{w}=\mathrm{A} / \mathrm{b}$

$$
\begin{gathered}
\rightarrow J=\frac{b \cdot\left(\frac{A}{b}\right)^{3}}{12}=\frac{A^{3}}{12 \cdot b^{2}} \\
C_{1} \cdot \frac{E \cdot A^{3}}{12 \cdot b^{2} \cdot L^{3}} \geq S \rightarrow \frac{m^{3}}{L^{3} \cdot \rho^{3}} \geq \frac{12 \cdot L^{3} \cdot b^{2}}{C_{1} \cdot E} \cdot S \rightarrow m^{3} \geq \frac{12 \cdot L^{3} \cdot b^{2}}{C_{1}} \cdot S \cdot \frac{L^{3} \cdot \rho^{3}}{E} \\
m \geq\left(\frac{12 \cdot S \cdot b^{2}}{C_{1}}\right)^{\frac{1}{3}} \cdot L^{2} \cdot \frac{\rho}{E^{\frac{1}{3}}}
\end{gathered}
$$

## Case : Beam under flexion conditions

## Resistance Optimization

$\begin{aligned} & \sigma_{\text {max }}=\frac{M_{f} \cdot y_{\text {max }}}{J}=\frac{M_{f} \cdot\left(\frac{w}{2}\right)}{J}=\frac{M_{f}}{J^{\prime}} \leq \sigma_{f} \quad\left[y_{\text {max }}=\text { Maximum distance from neutral axis }\right] \\ & \text { with } J=\frac{b \cdot w^{3}}{12}[\text { Moment of inertia, } b \text { width , w thickness }] \\ & \text { and with } \left.\quad J^{\prime}=\frac{b \cdot w^{2}}{6} \right\rvert\,[b \text { width , w thickness }]\end{aligned}$

- For square beam $b=w, A=b^{2} \rightarrow J^{\prime}=\frac{A^{3 / 2}}{6}$
[ this hypothesis is correct also if b and w are different but in proportion, as $\mathrm{b}=\mathrm{C} \cdot \mathrm{w}$ ]

$$
\begin{aligned}
& \frac{M_{f}}{J}=6 \frac{M_{f}}{A^{3 / 2}}=6 \frac{M_{f}}{A^{3 / 2}} \leq \sigma_{f} \\
& \rightarrow 6 \frac{M_{f}}{A^{3 / 2}}=6 \frac{M_{f} \cdot L^{3 / 2} \cdot \rho^{3 / 2}}{m^{3 / 2}} \leq \sigma_{f} \\
& m^{3 / 2} \geq 6 \cdot \frac{M_{f} \cdot L^{3 / 2} \cdot \rho^{3 / 2}}{\sigma_{f}} \\
& m \geq\left(6 \cdot M_{f}\right)^{2 / 3} \cdot L \cdot \frac{\rho}{\sigma_{f}^{2 / 3}}
\end{aligned}
$$

- For beam with width fixed and thickness variable (= panel), $w=A / b$

$$
\begin{gathered}
\rightarrow J^{\prime}=\frac{b \cdot w^{2}}{6}=\frac{b \cdot\left(\frac{A}{b}\right)^{2}}{6}=\frac{A^{2}}{6 \cdot b}[b \text { width, w thickness }] \\
\frac{M_{f}}{J^{\prime}}=6 \cdot b \cdot \frac{M_{f}}{A^{2}} \leq \sigma_{f} \\
\rightarrow 6 \cdot b \cdot \frac{M_{f}}{A^{2}}=6 \cdot b \cdot \frac{M_{f} \cdot L^{2} \cdot \rho^{2}}{m^{2}} \leq \sigma_{f} \\
m^{2} \geq 6 \cdot b \cdot \frac{M_{f} \cdot L^{2} \cdot \rho^{2}}{\sigma_{f}} \\
m \geq\left(6 \cdot b \cdot M_{f}\right)^{1 / 2} \cdot L \cdot \frac{\rho}{\sigma_{f}^{1 / 2}}
\end{gathered}
$$

Important don't confuse one index (one condition) with another index, as instance:


## Exercises:

ESO $\rightarrow$ simple Resistance Selection
ES1 $\rightarrow$ Resistance and Stiffness Selection for Sheets

ES1' $\rightarrow$ Resistance and Stiffness Selection for Cheap Sheets
ES2 $\rightarrow$ Selection for Oars light and stiff
ES2' $\rightarrow$ Selection for Oars light, stiff and CHEAP
ES3 $\rightarrow$ Minimize Thermal Distortion for precision devices
ES3 $\rightarrow$ Minimize Thermal Distortion for precision devices + price consideration
ES4 $\rightarrow$ Selection for long span transmission line
ES4' $\rightarrow$ Selection for conductive and light cable
ES $5 \rightarrow$ Materials for springs

## PRACTICAL WORKSHOP related exercises

## Materials Selection - Academic Year 2016-2017

Prof. J. Lecomte-Beckers
Pick 3 exercises below, with at least 1 amongst the exercise 4 and 5 . Solve the problems as performed during the workshop. An analytical resolution is required. If some hypotheses are necessary, you should detail them. The choice of the free variable has to be strictly justified. Some extra limits related to manufacturing, durability or mechanical aspects could have to be implemented.

The formulas datasheet present at the end of the printed course can be used.
The report must be printed and brought to the assistant Maurizi Enrici.

## Limit date: $\mathbf{1 8}^{\text {th }}$ November 2016

## Exercise 1

Select the cheapest materials for the Parthenon columns with a rectangular cross-section.

## Exercise 2

Select the cheapest material for a can.

## Exercise 3

Select the lightest and cheapest material for a car hood.

## Exercise 4

Select the lightest material for a lightweight table with slender cylindrical legs.

## Exercise 5

Select the lightest material for a tube which is submitted to bending and torsion.

