

Materials Selection – Case Study 1 Bases and Mechanical Properties

Professors:

Anne Mertens and Davide Ruffoni

Assistant:

Tommaso Maurizi Enrici

Mechanical Properties Case Studies

- Case Study 1: The Lightest STIFF <u>Beam</u>
- Case Study 2: The Lightest STIFF <u>Tie-Rod</u>
- Case Study 3: The Lightest STIFF <u>Panel</u>
- Case Study 4: Materials for Oars
- Case Study 5: Materials for CHEAP and Slender Oars
- Case Study 6: The Lightest STRONG <u>Tie-Rod</u>
- Case Study 7: The Lightest STRONG <u>Beam</u>
- Case Study 8: The Lightest STRONG <u>Panel</u>
- Case Study 9: Materials for Constructions
- Case Study 10: Materials for Small Springs
- Case Study 11: Materials for Light Springs
- Case Study 12: Materials for Car Body

CES 2009

CES 2016

Materials selection

- Mechanical properties: tensile test, fatigue, hardness, toughness, creep...
- **Physical properties**: density, conductivity, coefficient of thermal expansion
- Chemical properties : corrosion
- Microscopic characteristics: anisotropy of properties, hardening, microstructure, grain size, segregation, inclusions...

Materials selection

- **Process linked aspects**: formability, machinability, weldability, stampability
- Aestethic aspects: colour and surface roughness

<u>Notice</u>: surface properties ≠ volume properties

Design steps

Forecasts

Evolution of materials is challenged by:

- /mechanical properties
- physical and chemical properties
- \environmental problems (manufacturing)
- materials ressource

Key Domains : energy (nuclear, solar cells, ...)
transport

1850s, time of the Crimean War

Napoleon III

French military engineers had found they could control the trajectory applying a rifling or "spinning" in the barrels of

The spiraling motion added extra stresses Consequence?

Need a higherstrength material → Steel

1946, University of Pennsylvania Moore School of Electrical Engineering

Electronic Numerical
Integrator Analyser and
Computer (Eniac) by John
Mauchly and J. Presper
Eckert

The first general-purpose electronic computer

17468 thermionic valves 70,000 resistors

....

Covered 167 square metres of floor space Weighed 30 tonnes

Consumed 160 kW of electricity

<u>1947</u>,

Discovery of the Transistor (Semiconductors)

Built from materials such as **Silicon and Germanium** which can either behave as an electrical insulator or conductor

Companies spent tens of billion of dollars to squeeze more circuits on to a small 'chip' of material

2010, an Intel X3370 microprocessor – 820 million transistors

Your computer could handle 3 billion instructions /s

600000 more than Eniac

2012, low cost airlines company

Change the material of a small pivot (46) for each seat

In the air transports Weight = Costs

Aluminum → PE+ Glass fibers Composite

10,000,000 dollars saved each year

10

Mike Ashby from Univesity of Cambridge

[The mechanical efficiency of natural materials, Mike Ashby, 2003]

13

Simplification: Where is the problem?

1 mm

For a $\underline{\text{beam}}$ under flexion, the moment of inertia :

Thickness
$$(h) = 1 \text{ mm}$$

Width (b) =
$$25 \text{ mm}$$

$$I_{XX} = \frac{25 \cdot 1^3}{12} = 2,1 \ mm^4$$

$$I_{YY} = \frac{1 \cdot 25^3}{12} = 1300 \ mm^4$$

In the case of the mechanical properties, it is important to consider the forces applied, but it is the weakest point that determine the selection.

It is possible to change the geometry, but if you cannot What can we do?

Simplification: Train Wheel (Fast Example)

The Stiffness design

The Stiffness design

The Stiffness design is important to avoid excessive ELASTIC deflection

Shear

The Stiffness

$$S = \frac{F}{\delta} = \frac{C_1 EI}{L^3}$$

$$\delta = \varepsilon \cdot L$$

EI = Flexural rigidity

I = Second Moment of inertia

E = Young's Modulus

 δ = Deflexion

Thickness (h)= 1 mm

Width (b)=
$$25 \text{ mm}$$

$$I_{XX} = \frac{25 \cdot 1^3}{12} = 2,1 \ mm^4$$

$$I_{YY} = \frac{1 \cdot 25^3}{12} = 1300 \ mm^4$$

Problem:

δ??

IF we consider that the beam is made of Stainless Steel (E = 200 GPa)

Which are the consequences if I want to use Polystyrene (E = 2 GPa)? IF I can change the thickness and hold the same deflection.

The Stiffness

$$S = \frac{F}{\delta} = \frac{C_1 EI}{L^3}$$

EI = Flexural rigidity I = Second Moment of inertia E = Young's Modulus

Stainless Steel (E = 200 GPa; ρ = 7800 kg/m³) Polystyrene (E = 2 GPa; ρ = 1040 kg/m³)

$$I_{YY} = \frac{1 \cdot 25^{3}}{12} = 1300 \ mm^{4} \longrightarrow \delta = \frac{10 \cdot (0,25)^{3}}{3 \cdot (200 \cdot 10^{9}) \cdot (1300 \cdot 10^{-12})} = 0,02 \ mm$$

$$I_{XX} = \frac{25 \cdot 1^{3}}{12} = 2,1 \ mm^{4} \longrightarrow \delta = \frac{FL^{3}}{C_{1}EY_{XX}} = 124 \ mm$$
Steel

With
$$\delta = 124 \, mm$$

With
$$\delta = 124 \ mm$$
 $I_{XX} = \frac{10 \cdot (0.25)^3}{3 \cdot (2 \cdot 10^9) \cdot (0.124)} = 210 \ mm^4$

$$h = \left(\frac{12I_{XX}}{w}\right)^{1/3} = \left(\frac{12 \cdot 210}{25}\right)^{1/3} = 4.6 \text{ mm}$$
 When $h(Steel) = 1 \text{ mm}$

The Stiffness

$$S = \frac{F}{\delta} = \frac{C_1 EI}{L^3}$$

Length: 300 mm

Width = 25 mm

EI = Flexural rigidity

I = Second Moment of inertia

E = Young's Modulus

 δ = Deflexion

Stainless Steel (E = 200 GPa; ρ = 7800 kg/m³) Polystyrene (E = 2 GPa; ρ = 1040 kg/m³) Thickness = 1 mm
Thickness = 4,6 mm

About the weight?

$$m_{SS} = 7800 \cdot 0.3 \cdot 0.025 \cdot 0.001 = 59 \ gr$$

$$m_{PS} = 1040 \cdot 0.3 \cdot 0.025 \cdot 0.046 = 36 \ gr$$

BIGGER Section
BUT LIGHTER

Depends on what you need and the conditions

 $C_1 = 3$

The Materials Selection approach

Objective	Minimize the mass
Constraints	Stiffness specifiedLength LSquare shape
Free Variables	Area (A) of the cross-sectionChoice of the material

Length: 300 mm

EI = Flexural rigidity

I = Second Moment of inertia

E = Young's Modulus

 δ = Deflexion

Hypothesis:

•
$$\frac{F}{\delta} = S \ge S_{min}$$

$$\frac{F}{\delta} \ge S_{min} = \frac{C_1 EI}{L^3}$$

$$m = A \cdot L \cdot \rho \longrightarrow A = \frac{m}{L \cdot \rho}$$

m = mass

A = area of the section

L = Length

 ρ = Density

The Materials Selection approach

Case Study 1: Find the Lightest STIFF <u>Beam</u>

Beam: Square Section b=h

$$\frac{F}{\delta} = \frac{C_1 EI}{L^3} \ge S_{min}$$

$$A = \frac{m}{L \cdot \rho}$$

Since
$$A = b^2$$

$$I = \frac{bh^3}{12} = \frac{A^2}{12}$$

$$A = \frac{m}{L \cdot \rho}$$
 The Area will be the Free Variable

$$m \ge \left(\frac{12 \cdot S}{C_1 \cdot L}\right)^{1/2} \cdot L^3 \cdot \frac{\rho}{E^{1/2}}$$

Just remember:

Constraints

• Stiffness specified
• Length L
• Square shape

The Material Index (M)

Case Study 1: Find the Lightest STIFF <u>Beam</u>

The Material Index (M)

Case Study 1: Find the Lightest STIFF <u>Beam</u>

$$\sum_{1}^{2}$$
 Slope

Stainless Steel

(E = 200 GPa; ρ = 7800 kg/m³)

Polystyrene

(E = 2 GPa; $\rho = 1040 \text{ kg/m}^3$)

Lightest Beam (Bending conditions)

Case Study 1: Find the Lightest STIFF <u>Beam</u>

F = 100 N

$$\delta$$
 = 0,34 mm
 S_{min} = 296 · 10³ N/m

$$M \ge \left(\frac{12 \cdot S}{C_1 \cdot L}\right)^{1/2} \cdot L^3 \cdot \frac{\rho}{E^{1/2}}$$

$$A = \frac{m}{L \cdot \rho}$$

Length: 300 mm

Thickes 1 mm

Width and thickness .

Stainless Steel (E = 200 GPa; ρ = 7800 kg/m³) Polystyrene (E = 2 GPa; ρ = 1040 kg/m³)

Material	Weight (kg)	A (mm²)	Width and Thickness (mm)
Stainless Steel	0,935	400	20
Polystyrene	1,25	4000	63

CES

Ok, slow down..

Case Study 2: Find the Lightest STIFF <u>Tie-Rod</u>

Objective • Minimize the mass

Constraints • Stiffness specified

Length L

Free Variables • Area (A) of the cross-section

Choice of the material

Tie-Rod =

TRACTION CONDITIONS

DATA

F = 1000 N

Dimensions:

Length: 300 mm
Thickness = 1 mm

Width = 25 mm

In Traction,

the shape of the cross-section is not important

$$\boxed{m = A \cdot L \cdot \rho} \longrightarrow A = \frac{m}{L \cdot \rho}$$

From material: $\frac{\sigma}{\varepsilon} = E$

From definition: $\delta = \varepsilon \cdot L$

$$F = \sigma \cdot A$$

$$\frac{F}{\delta} \ge S_{min} = S$$

Lightest Tie-Rod (Traction conditions)

Case Study 2: Find the Lightest STIFF <u>Tie-Rod</u>

$$\frac{F}{\delta} \ge S_{min} = S$$

F = 1000 N

$$\delta = 3.78 \cdot 10^{-3} \text{ mm}$$

 $S_{min} = 264.5 \cdot 10^{6} \text{ N/m}$

Dimensions:

Length: 300 mm

Thickness = 1 mm

Width = 25 mm

$$m \ge (264.5 \cdot 10^6) \cdot (300 \cdot 10^{-3})^2 \cdot \frac{\rho}{E}$$

 $\ge \dots \cdot \frac{\rho}{F}$

$$\frac{\sigma \cdot A}{\varepsilon \cdot L} \ge S_{min} \qquad \frac{E \cdot A}{L} \ge S_{min}$$

$$A = \frac{m}{L \cdot \rho} \qquad m \ge S \cdot L^2 \cdot \frac{\rho}{E}$$

CES

Case Study 2: Find the Lightest STIFF <u>Tie-Rod</u>

36

Lightest Tie-Rod (Traction conditions)

Case Study 2: Find the Lightest STIFF <u>Tie-Rod</u>

F = 1000 N

$$\delta$$
 = 3,78 · 10⁻³ mm
 S_{min} = 264,5 · 10⁶ N/m

Dimensions:

Length: 300 mm
Thickness = 1 mm

Width = 25 mm

$$\frac{E \cdot A}{L} \ge S_{min}$$

$$A = \frac{m}{L \cdot \rho}$$

$$m \ge S \cdot L^2 \cdot \frac{\rho}{E}$$

$$m = \frac{E}{\rho}$$

Stainless Steel (E = 200 GPa;
$$\rho$$
 = 7800 kg/m³)
Silicon carbide (E = 430 GPa; ρ = 3150 kg/m³)
Al Alloys (E = 75 Gpa; ρ = 2700 kg/m³)

Material	Weight (kg)	A (mm²)	Width and Thickness (mm)
Silicon Carbide	0,174	179,8	13,4
Al Alloys	0,856	1050	32,4

Change of the section

Panel:

b fixed h free

Beam: Square <u>Section</u>

Panel:

h fixed b free

Lightest Panel (Bending conditions)

Hypothesis:

•
$$\frac{F}{\delta} \ge S = S_{min}$$

Length: 300 mm

Width: 25 mm

m = mass

A = area of the section

L = Length

 ρ = Density

Lightest Panel (Bending conditions)

Case Study 3: Find the Lightest STIFF <u>Panel</u>

$$A = \frac{m}{L \cdot \rho}$$
 The Area will be the Free Variable, but all the consequences of the selection are on the thickness
$$h = \frac{A}{b}$$

$$m \ge \left(\frac{12 \cdot S \cdot b^2}{C_1}\right)^{1/3} \cdot L^2 \cdot \frac{\rho}{E^{1/3}}$$

$$m = \frac{E^{1/3}}{\rho}$$

CES

Bending conditions

Stainless Steel

(E = 200 GPa; ρ = 7800 kg/m³)

Polystyrene

(E = 2 GPa; $\rho = 1040 \text{ kg/m}^3$)

Bending conditions

F = 100 N δ = 0,34 mm S_{min} = 296 · 10³ N/m Stainless Steel (E = 200 GPa; ρ = 7800 kg/m³) Polystyrene (E = 2 GPa; ρ = 1040 kg/m³)

	Material	Weight (kg)	A (mm ²)	Thickness h (mm)
Beam —	Stainless Steel	0,935	400	20
	Polystyrene	1,25	4000	63
Panel (b= 25 mm)	Stainless Steel	1,09	466	21,59
	Polystyrene	0,67	2147	46,34

Stiffness Summary

To $m \quad \downarrow \quad At \ fixed \ S_{min}$ $S_{min} \quad \uparrow \quad \\ \delta_{max} \quad \downarrow \quad At \ fixed \ m$

Stiffness – Traction : Stiffness – Bending : Stiffness – Bending :

			O		
Name	Stage 1: Index	Name	Stage 1: Index	Name	Stage 1: Index
Silicon carbide	0.136	Silicon carbide ■ Comparison of the compar	0.00657	Rigid Polymer Foam (LD)	0.00697
Aluminum nitride	0.0984	CFRP, epoxy matrix (isotropic)	0.00651	Rigid Polymer Foam (MD)	0.00442
☐ Alumina	0.094	Bamboo	0.00601	Bamboo	0.00373
CFRP, epoxy matrix (isotropic)	0.0657	Aluminum nitride	0.00546	Flexible Polymer Foam (VLD)	0.00335
≅ Silicon	0.0634	≅ Silicon	0.00522	Wood, typical along grain	0.00321
Tungsten carbides	0.0425	Alumina	0.00492	CFRP, epoxy matrix (isotropic)	0.00301
💴 Silica glass	0.0323	Wood, typical along grain	0.00478	Paper and cardboard	0.00269
Soda-lime glass	0.0284	Rigid Polymer Foam (LD)	0.00413	Rigid Polymer Foam (HD)	0.00239
🖺 Borosilicate glass	0.0278	Silica glass	0.00384	Flexible Polymer Foam (LD)	0.00233
Aluminum alloys	0.0277	Magnesium alloys	0.00362	Flexible Polymer Foam (MD)	0.00212
Bamboo	0.025	Paper and cardboard	0.00354	Cork	0.00173
Wood, typical along grain	0.0158	Rigid Polymer Foam (MD)	0.00314		

Case Study 4: Materials for Oars

Case Study 4: Materials for Light Oars

We assume solid section

$$A = \pi \cdot r^2$$

$$\uparrow r$$

$$X$$

$$I = \frac{\pi r^4}{4} = \frac{A^2}{4\pi}$$

$$\frac{F}{\delta} \ge S_{min} = \frac{C_1 EI}{L^3}$$

$$A = \frac{m}{L \cdot \rho}$$

47

Case Study 4: Materials for Light Oars

Case Study 4: Materials for Light and Slender Oars

We assume solid section

$$A = \pi \cdot r^2$$

$$I = \frac{\pi r^4}{4} = \frac{A^2}{4\pi}$$

$$\int \frac{F}{\delta} \ge S_{min} = \frac{C_1 EI}{L^3}$$

$$I = \frac{\pi r^4}{4} = \frac{A^2}{4\pi}$$

$$A \le \left(\frac{4 \cdot \pi \cdot S \cdot L^3}{3}\right)^{1/2} \cdot \frac{1}{E^{1/2}}$$

Place LIMITS to a single Property Evaluating the Properties Chart

Case Study 4: Materials for Light and Slender Oars

 $m = \frac{E^{1/2}}{\rho}$

Case Study 4: Materials for Light and Slender Oars

$$Solid\ I = \frac{\pi r^4}{4} = \frac{A^2}{4\pi}$$

Tube
$$I = \pi r^3 t$$

$$S \ge \frac{3 \cdot m^2}{4 \cdot \pi \cdot L^5} \cdot \frac{E}{\rho^2}$$

At fixed S_{min}

 S_{min}

 δ_{max}

At fixed m

If you're planning on using a sliding seat system for your boat, be sure to factor in the cost of proper rowing sculls. Alternatively economical and attractive wooden sculling oars can be constructed if you have the time.

OAR SPECS

popular sculling oars are 9'6" in length, and construction is as light as possible. Carbon fiber oars weigh about 5 lbs each while fiberglass and hollow shaft wood are about 4-5 lbs.

There are two main blade shapes — Macon and Hatchet (also known as cleaver). Macons are the traditional tuliplike shape and the oars are symmetrical on both sides), while Hatchets are asymmetrical with more blade Actending down from the shaft into the water. Hatchets are either port or starboard. Both designs work well, however, hatchets are slightly more efficient. Macons on the other hand, are more effective if you decide to row without feathering since the blades are less likely to catch the water on the return stroke.

1,58 kg Probably Tube shape Assume 2,5 kg for a Solid Oar (exagerated)

 $S_{CFRP} = 853,94 \text{ N/m}$ $S_{Bamboo} = 666,1 \text{ N/m}$

CFRP good for Competition Oar

10-kg

	Objective	•	Minimize the cost
~	Constraints	•	Stiffness specified
		•	Length L
		•	Circular shape (beam)
	Free	•	Area (A) of the cross-section
	Variables	•	Choice of the material

L (Outboard) = 2 m

$$m \ge \left(\frac{4 \cdot \pi \cdot S \cdot L^5}{3}\right)^{1/2} \cdot \frac{\rho}{E^{1/2}}$$

$$C = m \cdot C_m \longrightarrow m = \frac{C}{C_m}$$

 $m{C}$ Cost $m{C}_m$ Cost per unit of mass

Better to consider cost always as a function of mass

$$C \ge \left(\frac{4 \cdot \pi \cdot S \cdot L^5}{3}\right)^{1/2} \cdot \frac{\rho \cdot C_m}{E^{1/2}}$$

10 Gpa < E < 200 GPa

$$m \ge \left(\frac{4 \cdot \pi \cdot S \cdot L^5}{3}\right)^{1/2} \cdot \frac{\rho}{E^{1/2}}$$

$$C = m \cdot C_m \longrightarrow m = \frac{C}{C_m}$$

 $C \ge \left(\frac{4 \cdot \pi \cdot S \cdot L^5}{3}\right)^{1/2} \cdot \frac{\rho \cdot C_m}{E^{1/2}}$

 $m{C}$ Cost $m{C}_m$ Cost per unit of mass

Better to consider cost always as a function of mass

Woods good for Commercial Oar

The Strength design

The Strength design

The Strength design is important to avoid plastic collapse

Lightest Tie-Rod (Traction conditions)

DATA

F = 1000 N

Dimensions:

Length: 300 mm Thickness = 1 mmWidth = 25 mm

In Traction, the shape of the cross-section is not important

Ashby Diagrams

CES

Case Study 6: Find the Lightest STRONG <u>Tie-Rod</u>

Thursday, October 4, 2018 Materials Selection 60

Lightest Tie-Rod (Traction conditions)

Case Study 6: Find the Lightest STRONG <u>Tie-Rod</u>

$$m \ge F \cdot L \cdot \frac{\rho}{\sigma_{\mathcal{V}}}$$

It is possible to do as before, but let's calculate the maximum F on the precedent Tie-Rod

Material	Weight (kg)	Width and Thickness (mm)
Al Alloys	1,25	63

Stainless Steel (σ_y = 600 MPa; ρ = 7800 kg/m³) Wood (σ_y = 50 MPa; ρ = 700 kg/m³) Al Alloys (σ_y = 270 Mpa; ρ = 75 kg/m³)

$$F \leq \frac{m}{L} \cdot \frac{\sigma_y}{\rho} = 416 \, kN$$

X kN

Elastic Throughout

Plastic deformation/ Collapse

Lightest Beam (Bending conditions)

 y_{max} = max distance from the

Length: 300 mm

Hypothesis:

 $C_1 = 3$

•
$$y_{max} = h/2$$

•
$$\sigma_{max} \ge \sigma$$

neutral axis $\rightarrow \sigma_{max}$ $\sigma_{max} = \frac{M_f \cdot y_{max}}{I} \le \sigma_f$ $m = A \cdot L \cdot \rho \longrightarrow A = \frac{m}{L \cdot \rho}$

M = Moment

 $\sigma = Stress$

Beam: Square Section b=h

Since $A = b^2$

$$I = \frac{bh^3}{12} - \gg \frac{A^{3/2}}{6}$$

Lightest Beam (Bending conditions)

Case Study 7: Find the Lightest STRONG Beam

$$\sigma_{max} = \frac{M_f \cdot y_{max}}{I} = \frac{M_f \cdot \frac{h}{2}}{\frac{bh^3}{12}} = \frac{M_f}{I'} \le \sigma_f$$

$$m = A \cdot L \cdot \rho \longrightarrow A = \frac{m}{L \cdot \rho}$$

$$I' = \frac{bh^2}{6} - \gg \frac{A^{3/2}}{6}$$

$$\sigma_f \ge \frac{M_f \cdot 6}{A^{3/2}} = \frac{M_f \cdot 6 \cdot L^{3/2} \cdot \rho^{3/2}}{m^{3/2}}$$

$$\downarrow$$

$$m \ge (M_f \cdot 6)^{2/3} \cdot L \cdot \frac{\rho}{\sigma_f^{2/3}}$$

CES

Lightest Beam (Bending conditions)

Case Study 7: Find the Lightest STRONG Beam

$$\sigma_{max} = \frac{M_f \cdot y_{max}}{I} = \frac{M_f \cdot \frac{h}{2}}{\frac{bh^3}{12}} = \frac{M_f}{I'} \le \sigma_f$$

$$m = A \cdot L \cdot \rho \longrightarrow A = \frac{m}{L \cdot \rho}$$

 It is always better to choose a shape that uses less material to provide the same strength TO SUPPORT BENDING

$$I' = \frac{bh^2}{6} \gg \frac{A^{3/2}}{6}$$

$$\sigma_f \ge \frac{M_f \cdot 6}{A^{3/2}} = \frac{M_f \cdot 6 \cdot L^{3/2} \cdot \rho^{3/2}}{m^{3/2}}$$

$$\downarrow$$

$$m \ge (M_f \cdot 6)^{2/3} \cdot L \cdot \frac{\rho}{\sigma_f^{2/3}}$$

Lightest Panel (Bending conditions)

Length: 300 mm

Hypothesis:

 $C_1 = 3$

•
$$y_{max} = h/2$$

•
$$\sigma_{max} \geq \sigma$$

$$\sigma_{max} = \frac{M_f \cdot y_{max}}{I} \le \sigma_f$$

$$m = A \cdot L \cdot \rho \longrightarrow A = \frac{m}{L \cdot \rho}$$

$$I' = \frac{bh^2}{6} \gg \frac{A^2}{b \cdot 6}$$

b = 25 mm

Since A = bh
$$h = \frac{A}{a}$$

Lightest Panel (Bending conditions)

Case Study 8: Find the Lightest STRONG Panel

$$I' = \frac{bh^2}{6} \gg \frac{A^2}{b \cdot 6}$$

$$\sigma_{max} = \frac{M_f \cdot y_{max}}{I} = \frac{M_f \cdot b \cdot 6}{A^2} = \frac{M_f}{I'} \le \sigma_f$$

$$m = A \cdot L \cdot \rho \longrightarrow A = \frac{m}{L \cdot \rho}$$

$$\sigma_{f} \ge \frac{M_{f} \cdot b \cdot 6}{A^{2}} = \frac{M_{f} \cdot 6 \cdot b \cdot L^{2} \cdot \rho^{2}}{m^{2}}$$

$$\downarrow$$

$$m \ge (M_{f} \cdot 6 \cdot b)^{1/2} \cdot L \cdot \frac{\rho}{\sigma_{f}^{1/2}}$$

CES

Thursday, October 4, 2018 Materials Selection 68

Lightest Panel (Bending conditions)

Case Study 8: Find the Lightest STRONG Panel

$$\sigma_{max} = \frac{M_f \cdot y_{max}}{I} = \frac{M_f \cdot \frac{h}{2}}{\frac{bh^3}{12}} = \frac{M_f}{I'} \le \sigma_f$$

$$m = A \cdot L \cdot \rho \longrightarrow A = \frac{m}{L \cdot \rho}$$

 It is always better to choose a shape that uses less material to provide the same strength TO SUPPORT BENDING

$$I' = \frac{bh^2}{6} \gg \frac{A^{3/2}}{6}$$

$$\sigma_f \ge \frac{M_f \cdot 6}{A^{3/2}} = \frac{M_f \cdot 6 \cdot L^{3/2} \cdot \rho^{3/2}}{m^{3/2}}$$

$$\downarrow$$

$$m \ge (M_f \cdot 6 \cdot b)^{1/2} \cdot L \cdot \frac{\rho}{\sigma_f^{1/2}}$$

Summary (to minimize the mass)

Stiffness – Traction:

Name	Stage 1: Index
Silicon carbide	0.136
Aluminum nitride	0.0984
Alumina	0.094
CFRP, epoxy matrix (isotropic)	0.0657
Silicon	0.0634
Tungsten carbides	0.0425
Silica glass	0.0323
Soda-lime glass	0.0284
Borosilicate glass	0.0278
Aluminum alloys	0.0277
Bamboo	0.025
Wood, typical along grain	0.0158

Strength - Traction:

Name	Stage 1: Index
CFRP, epoxy matrix (isotropic)	0.491
Silicon carbide	0.157
Titanium alloys	0.121
≅ Alumina	0.117
Low alloy steel	0.0987
Aluminum nitride	0.0983
Magnesium alloys	0.0908
High carbon steel	0.0866
GFRP, epoxy matrix (isotropic)	0.0783
Medium carbon steel	0.0667
Wood, typical along grain	0.0661
Cast iron, ductile (nodular)	0.0577
Stainless steel	0.0526
Aluminum alloys	0.0455
Nickel alloys	0.0312

Stiffness – Bending (Beam):

Name		Stage 1: Index
Silic	on carbide	0.00657
CFI	RP, epoxy matrix (isotropic)	0.00651
≅ Bar	nboo	0.00601
≅ Alu	minum nitride	0.00546
≅ Silio	con	0.00522
≅ Alu	mina	0.00492
≅ Wo	od, typical along grain	0.00478
	id Polymer Foam (LD)	0.00413
≅ Silio	a glass	0.00384
	gnesium alloys	0.00362
	er and cardboard	0.00354
≡ Rig	id Polymer Foam (MD)	0.00314
\boldsymbol{E}	$E^{1/2}$	$E^{1/3}$
_		
ho	ρ	ρ
σ_y	$\sigma_y^{2/3}$	$\sigma_y^{1/2}$
ρ	ρ	ρ
_		- -

Strength – Bending:

Name	Stage 1: Index
runc	Stage It Index
CFRP, epoxy matrix (isotropic	0.0538
Silicon carbide	0.0198
Wood, typical along grain	0.0185
Magnesium alloys	0.0165
Rigid Polymer Foam (LD)	0.0159
Titanium alloys	0.0147
Rigid Polymer Foam (MD)	0.00986
Aluminum alloys	0.00916

Stiffness - Bending (Panel):

Name	Stage 1: Inde
Rigid Polymer Foam (LD)	0.00697
Rigid Polymer Foam (MD)	0.00442
Bamboo	0.00373
Flexible Polymer Foam (VLD)	0.00335
Wood, typical along grain	0.00321
CFRP, epoxy matrix (isotropic)	0.00301
Paper and cardboard	0.00269
Rigid Polymer Foam (HD)	0.00239
Flexible Polymer Foam (LD)	0.00233
Flexible Polymer Foam (MD)	0.00212
Cork	0.00173

Strength - Bending (Panel):

Name	Stage 1: Index
CFRP, epoxy matrix (isotropic)	0.0178
Rigid Polymer Foam (LD)	0.0168
Wood, typical along grain	0.00977
Rigid Polymer Foam (MD)	0.00959
■ Bamboo	0.00904
Flexible Polymer Foam (VLD)	0.00787
Paper and cardboard	0.0074
Magnesium alloys	0.00702
Rigid Polymer Foam (HD)	0.00623
Flexible Polymer Foam (LD)	0.0054

Case Study 9: Materials for Constructions Some data: Nowadays, half the expense of building a

house is the cost of the materials

Family house: 200 tons

Large apartment block: 20,000 tons

Case Study 9: Materials for Constructions Mr. Pincopallo asks
a new cover

→ translate it in selection criteria, thus properties,

Hypothesis:

•
$$\frac{F}{\delta} \ge S_{min} = S$$

Floor joints are beams, loaded in bending.

$$\frac{F}{\delta} \ge S_{min} = \frac{C_1 EI}{L^3} \qquad \qquad \qquad \qquad C \ge \left(\frac{4 \cdot \pi \cdot S \cdot L^5}{3}\right)^{1/2} \cdot \frac{\rho \cdot C_m}{E^{1/2}}$$

$$m = A \cdot L \cdot \rho \quad \longrightarrow \quad A = \frac{m}{L \cdot \rho}$$

$$C = m \cdot C_m \quad \longrightarrow \quad m = \frac{C}{C_m}$$

Objective	Minimize the cost
Constraints	 Length L specified Stiffness: must not deflect too much under loads Strength: must not fall under design loads
Free Variables	Area (A) of the cross-sectionChoice of the material

$$I = \frac{bh^3}{12} \gg \frac{A^{3/2}}{6}$$

Floor joints are beams, loaded in bending.

$$\sigma_{max} = \frac{M_f \cdot y_{max}}{I} \le \sigma_f \qquad \longrightarrow \qquad C \ge (M_f \cdot 6)^{2/3} \cdot L \cdot \frac{\rho \cdot C_m}{\sigma_f^{2/3}}$$

$$m = A \cdot L \cdot \rho \quad \longrightarrow \qquad A = \frac{m}{L \cdot \rho}$$

$$C = m \cdot C_m \quad \longrightarrow \qquad m = \frac{C}{C_m}$$

Case Study 9: Materials for Constructions

ATTENTION!!!
Selection with the cost/kg and with the cost/m³ is
DIFFERENT

Case Study 9: Materials for Constructions

Case Study 9: Materials for Constructions

77

Case Study : Materials for Springs

Case Study 10: Materials for Small Springs

Condition of elasticity

$$\sigma_{y} \geq \sigma$$

$$\sigma = E \cdot \varepsilon \longrightarrow \varepsilon = \frac{\sigma}{E}$$

SMALL?? $\rightarrow V$ FREE VARIABLE!!

$$dV = dxdydz$$

Case Study 10: Materials for Small Springs

$$\sigma_{y} \ge \sigma$$

$$\varepsilon = \frac{\sigma}{E}$$

$$dV = dxdydz$$

$$m = V \cdot \rho$$

$$W_{el} = \frac{1}{2} \int \sigma \cdot \varepsilon \, dV = \frac{1}{2} \, \sigma \cdot \varepsilon \cdot V$$

Total strain energy in the piece considered

$$U = \frac{\left(\sigma_{xx}dydz\right)^2 dx}{2Edydz}$$

$$W_{el} = \frac{{\sigma_y}^2}{2E} = M_1$$

Total strain energy PER UNIT OF VOLUME

[Solid Mechanics Part I Kelly]

Case Study 10: Materials for Small Springs

- **CFRP** = Comparable in performance with steel; expensive [TRUCK SPRINGS]
- STEEL = The traditional choice: easily formed and heat treated
- **TITANIUM** = Expensive, corrosion resistant

Case Study Materials for Springs

$W_{el} = \frac{{\sigma_y}^2}{2E}$

Valid for axial springs
Because much of the material is not
fully loaded

PAY ATTENTION

$$W_{el} = \frac{{\sigma_y}^2}{3E}$$

For torsion springs (less efficient)

Case Study Materials for Springs

$$W_{el} = \frac{{\sigma_y}^2}{4E}$$

9

For leaf springs (less efficient)

Case Study 9: Materials for Light Springs

$$\sigma_{y} \ge \sigma$$

$$\varepsilon = \frac{\sigma}{E}$$

$$dV = dxdydz$$

$$m = V \cdot \rho$$

$$W_{el} = \frac{1}{2} \int \sigma \cdot \varepsilon \, dV = \frac{1}{2} \, \sigma \cdot \varepsilon \cdot V$$

Total strain energy in the piece considered

$$LIGHT?? \rightarrow \frac{v}{\rho}$$
 FREE VARIABLE!!

$$\frac{W_{el}}{\rho} = \frac{\sigma_f^2}{2 \cdot E \cdot \rho} = M_2$$

Total strain energy PER UNIT OF MASS

[Solid Mechanics Part I Kelly]

Case Study 11:

- **CFRP** = Comparable in performance with steel; expensive [TRUCK SPRINGS]
- **RUBBERS** = 20 times better than Steel; but low tensile strength high loss factor

Nickel-based superalloys

0,363

85

Young's modulus / Density

Case Study 12: Materials for Car Body

Some context \rightarrow Car Evolution

1932 Ford Model B

1934 Bonnie and Clyde car

Case Study 12: Materials for Car Body

Some context \rightarrow Car Evolution

Case Study 12: Materials for Car Body

Deformation?? \rightarrow ENERGY CONSUMPTION

At first, automotive industry move to too deformable cars and then move to have a mix FOR PEOPLE SAFETY

Sometimes exaggerate

Objective	 Maximize plastic deformation at high load
Constraints	 Geometry High σ_y Division for price Consider manufacture
Free Variables	Choice of the material

LIGHT?? $\rightarrow m$

$$\frac{W_{el}}{\rho} = \frac{\sigma_f^2}{2 \cdot E \cdot \rho} = M_2$$

Total strain energy PER UNIT OF MASS

 $LIGHT?? \rightarrow m$

$$\frac{W_{el}}{\rho} = \frac{\sigma_f^2}{2 \cdot E \cdot \rho} = M_2$$

Total strain energy PER UNIT OF MASS

Objective	Maximize plastic deformation at high load
Constraints	 Geometry High σ_y Division for price Consider manufacture
Free Variables	Choice of the material

Steps:

- Stiffness selection (Take off flexible materials)
- Yield strength selection to minimize the costs (Automotive)
- Minimum Yield Strength
- Maximization of stored energy

+ $minimum \sigma_y$ (200 MPa)

Total strain energy PER UNIT OF VOLUME

 $\frac{W_{el}}{\rho} = \frac{\sigma_f^2}{2 \cdot E \cdot \rho} = M_2$

Total strain energy PER UNIT OF MASS

 $\frac{W_{el}}{\rho} = \frac{\sigma_f^2}{2 \cdot E \cdot \rho} = M_2$

Total strain energy PER UNIT OF MASS

Manufacturing Consideration

Changing the carbon fiber manufacturing process

Lamborghini's innovation is a product and a process called Forged Composite. This material starts off as a sheet of uncured plastic that is mixed with short lengths of randomly placed carbon fiber strands. Unlike traditional pre-preg carbon fiber cloth, you don't have to carefully cut this material and lay it out precisely in a mold. You just have to cut off the right mass and put the chunk into a hot press mold. You squeeze it, heat it and you're done. The part that comes out of the mold is as light (or lighter) and as stiff (or stiffer) than a conventionally laid-up carbon fiber part, and you can produce it in minutes rather than hours.

You can now treat carbon fiber the way the automobile industry has treated steel, aluminum, and unreinforced plastic for decades.

This changes the rules of manufacturing because you can now treat carbon fiber the way the automobile industry (and every other manufacturing industry) has treated steel, aluminum, and unreinforced plastic for decades: You just stamp out the parts you need. As automakers look to the future of increased CAFE standards and lighter-weight vehicles, making parts out of carbon fiber without the extra labor expense is a killer app.

97

"By continuing to develop our patented forged composite materials, we are able to create a product that can enhance Lamborghini super sports cars in both their performance and their appearance," said Maurizio Reggiani, Director of R&D for Lamborghini. "The ability to leverage this kind of lightweight material gives Lamborghini an advantage that will benefit our cars – as well as production process – in the future."

[www.digital trends.com/cars/lamborghini-forged-carbon-fiber-manufacturing-process]

Vacuum and pressure bag molding

Cost model and defaults

Relative cost index (per unit)

(i) 178 - 3,2e3

Parameters: Material Cost = 7,33EUR/kg, Component Mass = 1kg, Batch Size = 1e3, Overhead Rate = 137EUR/hr, Discount Rate = 5%, Capital

Capital cost (i) 7,52e5 3.01e4 **EUR** (i) Material utilization fraction 0.85 0.95 Production rate (units) 0,05 No way for a /hr (1) Tooling cost EUR 152 3,01e3 commercial car Tool life (units) 100 1e3

And which Metal?

 $\frac{W_{el}}{\rho} = \frac{\sigma_f^2}{2 \cdot E \cdot \rho} = M_2$

Total strain energy PER UNIT OF MASS

Stamping

Case Study 12: Materials for Car Body (Car Hood or Car Door)

Cost model and defaults

Relative cost index (per unit)

(i) 10,3 - 2

Parameters: Material Cost = 7,33EUR/kg, Component Mass = 1kg, Batch Size = 1e3, Overhead Rate = 137EUR/hr, Discount Rate = 5%, Capital Write-off Time = 5yrs, Load Factor = 0,5

Material Cost=7,33EUR/kg, Component Mass=1kg, Overhead Rate=137EUR/hr, Capital Write-off Time=5yrs, Load Factor=0,5, Discount Rate=5%

Capital cost	(i)	7,52e3	-	7,52e4	EUR
Material utilization fraction	(i)	0,7	-	8,0	
Production rate (units)	(i)	200	-	5e3	/hr
Tooling cost	(i)	150	-	1,5e4	EUR
Tool life (units)	(i)	1e4	-	1e6	

PROCESSABILITY

Case Study 12: Materials for Car Body (Car Hood or Car Door)

Metals easy to stamp

$$\frac{W_{el}}{\rho} = \frac{\sigma_f^2}{2 \cdot E \cdot \rho} = M_2$$

Total strain energy PER UNIT OF MASS + Minimum Formability (4)

PROCESSABILITY

Case Study 12: Materials for Car Body (Car Hood or Car Door)

Metals easy to stamp

 $\frac{W_{el}}{\rho} = \frac{\sigma_f^2}{2 \cdot E \cdot \rho} = M_2$

Total strain energy PER UNIT OF MASS

- + Minimum Formability (4)
- + Minimum Brazability (3)

Name

Case Study 12:
Materials for Car Body
(Car Hood or Car Door)

Low alloy steel 0,585
Age-hardening wrought Al-alloys 0,562
High carbon steel 0,554
Nickel-based superalloys 0,535

Deeper selection?

LEVEL 3

[https://www.cartalk.com/blogs/jim-motavalli/steel-vs-aluminum-lightweight-wars-heat]

Materials Selection Steps

"DON'T
BELIEVE
EVERYTHING
YOU READ
ON THE
INTERNET"

ABRAHAM
LINCOLN

Decide Design Requirements

Get rid of Candidates that don't fit constraints e.g. max service temperature isn't high enough

Optimize on Objectives e.g. low mass, low cost, high strength

Scrutinize candidate shortlist – do I have valid properties

- Materials Selection is about trade-offs, not one right answer
- Environmental legislation, processability and the security of the supply chain are important factors, along side mechanical and thermal performance

Optional:

Decide on strategy to fill knowledge gaps