"MECA0462-2 : Materials Selection", 13/11/2018

Metal matrix composites

Anne Mertens

Outline

- Introduction: why composite materials?
- Case study I: Material for electronic packaging
- Case study II: Enhanced wear resistance
- Case study III: Functional materials
- Processing metal matrix composites: a problem of interface engineering!
- Summary

Introduction

Why composite materials

- To fill gaps in material-property space
- To obtain combination of properties not available with "simple" materials

[M.F. Ashby, Materials selection in mechanical design]

 New combination of interesting mechanical properties

Improved stiffness compared to conventional Al alloys

[M.F. Ashby, Materials selection in mechanical design]

 New combination of interesting mechanical properties

Improved stiffness compared to conventional Al alloys

Choice of materials?

- Be is stiffer and lighter than Al
- Al₂O₃ is stiffer but heavier than Al

 New combination of interesting mechanical properties

One can be imaginative!

- Combine high thermal conductivity and low thermal expansion
- Enhance wear resistance
- Design functional materials
 - Self-lubricating
 - Self-cleaning
 - Self-healing

. . .

Outline

- Introduction: why composite materials?
- Case study I: Material for electronic packaging
- Case study II: Enhanced wear resistance
- Case study III: Functional materials
- Processing metal matrix composites: a problem of interface engineering!
- Summary

Case study I

Material for electronic packaging

Electronic packaging and heat sink

[Wikipedia: Fir0002/Flagstaffotos]

Electronic packaging

- Thermal expansion α close to $\alpha_{silicon}$
- High thermal conductivity (λ)
- For portable applications: low density (ρ)

[S.Ryelandt et al., Euromat 2005]

Materials for electronic packaging

- Thermal expansion α close to $\alpha_{silicon} \Rightarrow SiC$
- High thermal conductivity $(\lambda) \Longrightarrow AI$
- For portable applications: low density $(\rho) \Longrightarrow Al$
- Al-SiC composites?

[S.Ryelandt et al., Euromat 2005]

Materials for electronic packaging

[Huber et al., Comp. Sci. Technol. 2006; Chu et al., Mater. Des. 2009]

Materials for electronic packaging

• Al + another metallic material with low α ? \Rightarrow Invar (Fe-Ni or Fe-Co-Cr alloys)

[http://images-of-elements.com/other.php]

[Borvan53 (Own work) [Public domain], via Wikimedia Commons]

Anisotropy is desirable!

- Thermal expansion α close to $\alpha_{silicon}$ (in plane)
- High thermal conductivity (λ) (in transverse direction)
 - For portable applications: low density (p)

[S.Ryelandt et al., Euromat 2005]

Anisotropic Al-invar composite

- Al 20 % stainless invar
- Thermal expansion α close to $\alpha_{silicon}$ (in plane)
- High thermal conductivity:
 λ = 206 Wm⁻¹K⁻¹
 (in transverse direction)
- Low density (ρ)

[Ryelandt, Mertens & Delannay, Mater. Des. 2015]

Anisotropic Al-invar composite

- Al 20 % stainless invar
- Thermal expansion α close to $\alpha_{silicon}$ (in plane)
- High thermal conductivity:
 λ = 206 Wm⁻¹K⁻¹
 (in transverse direction)
 - Low density (p)

Change α , λ and ρ by adjusting the volume fraction of invar

[Ryelandt, Mertens & Delannay, Mater. Des. 2015]

Al-invar composites

[Ryelandt, Mertens & Delannay, Mater. Des. 2015] 19

Outline

- Introduction: why composite materials?
- Case study I: Material for electronic packaging
- Case study II: Enhanced wear resistance
- Case study III: Functional materials
- Processing metal matrix composites: a problem of interface engineering!
- Summary

Case study II

Enhanced wear resistance

Electro-deposition of Ni + (nano-particles) of SiC

Composite coating gives better coverage

Electro-deposition of Ni + (nano-particles) of SiC

Table 3

Surface roughness Ra and HV_{0.3} mean values.

[Lekka et al., Surf. Coat. Technol. 2012]

Deposit	Ra (µm)	HV _{0.3}
Pure Ni	1.32 ± 0.2	162 ± 2
Ni/µSiC	1.97 ± 0.2	245 ± 5
Ni/nSiC	1.33 ± 0.3	270 ± 9

[http://www.twi-global.com/technical-knowledge/job-knowledge/hardness-testing-part-1-074/]

Hardness ↑

Electro-deposition of Ni + (nano-particles) of SiC

Electro-deposition of Ni + (nano-particles) of SiC

Resistance to scratch \uparrow

Outline

- Introduction: why composite materials?
- Case study I: Material for electronic packaging
- Case study II: Enhanced wear resistance
- Case study III: Functional materials
- Processing metal matrix composites: a problem of interface engineering!
- Summary

Case study III

Functional materials

Self-cleaning materials

Electro-deposition of Ni + nano-particles of TiO_2

Under UV light, TiO₂ causes photocatalytic degradation of pollutants Efficiency of "self- cleaning" depends on

- volume fraction of TiO₂
- structure of Ni matrix

Self-lubricating materials

- Lubrication is important in decreasing friction and wear e.g. during machining or sliding contact
- At high temperature, conventional liquid lubricants (oil, ...) do not work
- Dry lubricants that are stable at high temperatures offer alternatives
 - graphite
 - boron nitride (BN)
 - molybdenum di-sulfide (MoS₂)

Self-lubricating materials

Dry lubricants are included in the bearing material (stainless steel 316L) and then released progressively

Self-lubricating materials

Dry lubricants are included in the bearing material (stainless steel 316L) and then released progressively

Self-healing materials

- Healing agents/capsules (e.g. with low melting temperature) are dispersed in the material
- After service, the material is heat treated to release the healing agent where it is needed

[Ferguson et al., JOM 2014]

- Self healing developed 1st for polymers
- Very early stage for metals!

Outline

- Introduction: why composite materials?
- Case study I: Material for electronic packaging
- Case study II: Enhanced wear resistance
- Case study III: Functional materials
- Processing metal matrix composites: a problem of interface engineering!
- Summary

Processing of MMCs

A problem of interface engineering!

Role of interface!

When using composites, designers generally make the assumption of **fully dense, strongly bonded** composites

⇒ Optimal load-transfer between matrix and reinforcement

Processing?

... but obtaining **fully dense**, **strongly bonded** composites is not trivial!

Especially by liquid (molten) state processing

Processing must be optimized! Example of liquid (molten) state processing: squeeze casting

Fast solidification may result in poor infiltration and porosities

Mg alloy + C fibres composites

[F. Boland et al., MMTA, 1998]

Processing must be optimized!

Interfacial reactions between matrix and reinforcement may

- degrade the reinforcement
- result in undesirable (brittle) reaction products

Brittle intermetallics formed by reaction between Al matrix and inconel fibres

(c) Al-20In/thin/850°C/400°C/400g $50 \,\mu m$

[F. Boland et al., MMTA, 1998]

In extreme cases, fibres may be completely consumed!

Processing must be optimized!

Interfacial reactions between matrix and reinforcement may

A small amount of reaction may sometimes be beneficial

 $Mg + Al_2O_3$ fibres

[K.U. Kainer, Basics of metal matrix composites, 2006]

Summary

- Composites allow to fill gaps in the material-property space and obtain new combination of properties
 - enhance mechanical properties (stiffness, wear resistance...)
 - obtain specific combination of thermophysic properties
 e.g.: material for electronic packaging
 - Functional materials (self-cleaning, self-lubricating, selfhealing...)
- Warning: processing must be optimized to guarantee the desired properties
 - in metal matrix composites, quality of interface may be affected by reactions between the matrix and reinforcement