"MECA0462-2 : Materials Selection", 02/10/2018

Metals III

Anne Mertens

Outline

- Introduction
 - Summary of previous lectures
 - Case study in controlling material structure:
 Fine grained casting
- Light alloys
- Carbon steels
- Alloy steels
- Production, forming and joining of metals

Introduction

Summary of previous lectures

Materials selection

- Aim: select the best material for a given application
- Many ≠ criteria must be taken into account
 - Physical properties (density, conductivity...)
 - Mechanical properties (yield stress, fatigue...)
 - Corrosion resistance
 - Bio-compatibility
 - Processability, formability
 - Cost

Materials selection

- Aim: select the best material for a given application
- Many ≠ criteria must be taken into account
- \Rightarrow Need for a methodology
- \Rightarrow Need for database of materials properties

Metal	Cost (UK£ (US\$) tonne ⁻¹)	Density (Mg m ⁻³)	Young's modulus (GPa)	Yield strength (MPa)	Tensile strength (MPa)
Iron Mild steel High-carbon steel Low-alloy steels High-alloy steels Cast irons	100 (140) 200-230 (260-300) 150 (200) 180-250 (230-330) 1100-1400 (1400-1800) 120 (160)	7.9 7.9 7.8 7.8 7.8 7.8 7.8 7.4	211 210 210 203 215 152	50 220 350-1600 290-1600 170-1600 50-400	200 430 650-2000 420-2000 460-1700 10-800
Copper Brasses Bronzes	1020 (1330) 750–1060 (980–1380) 1500 (2000)	8.9 8.4 8.4	130 105 120	75 200 200	220 350 350
Nickel Monels Superalloys	3200 (4200) 3000 (3900) 5000 (6500)	8.9 8.9 7.9	214 185 214	60 340 800	300 680 1300
Aluminium 1000 Series 2000 Series 5000 Series 7000 Series Casting alloys	910 (1180) 910 (1180) 1100 (1430) 1000 (1300) 1100 (1430) 1100 (1430)	2.7 2.7 2.8 2.7 2.8 2.7 2.8 2.7	71 71 71 71 71 71 71	25-125 28-165 200-500 40-300 350-600 65-350	70-135 70-180 300-600 120-430 500-670 130-400

Data for metals

Table 1.6 Properties of the generic metals

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

Structure-insensitive VS structure-dependent

Materials structure

- Materials selection to fulfill desired properties
- Some properties of metals are **structure**-sensitive
 - Crystalline vs amorphous structure
 - Phases (solid solution, intermetallic compounds...)
 - Grain size and shape, grain and interphase boundaries
- How can we control the structure?
 - Equilibrium structure:
 - by playing with the **chemical composition**
 - Out-of-equilibrium structure:

by playing with phase transformations, plastic strain....

Materials structure

- How can we control the structure?
 - Out-of-equilibrium structure:
 by playing with phase transformations, plastic strain....
 - Example 1: plastic deformation

Creation and propagation of crystalline defects

Dislocations density↑ ⇒ Entanglement ⇒ Dislocations glide more difficult ⇒ Strength ↑ ⇒ Work hardening

[J. Lecomte-Beckers, Phys0904 "Physique des Matériaux"]

Materials structure

- How can we control the structure?
 - Out-of-equilibrium structure:

by playing with phase transformations, plastic strain....

• Example 2: Intermetallic compounds

Heat treatment to control the formation of Al₂Cu and obtain optimized properties (Hardness)

Background on structural change

• Is change **possible**? ⇒ Driving force

Driving force for solidification

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

Background on structural change

- Kinetics: What is the **speed** of change?
- Kinetics depend on the mechanisms
 - Diffusion
 - Displacement
 - Nucleation
 - Homogeneous
 - Heterogeneous

Overall rate of transformation depends on individual rates for nucleation and growth

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

Assume the pre-existence then growth of nuclei of the new phase

10

Introduction

Case study: Fine grained casting

- Suitable for relatively complex shape
- Solidification structure? Grains?

• Solidification structure? Grains?

Stage 1:

Small solid crystals nucleate on the cold walls of the mould = "chill" crystals

 \Rightarrow Heterogeneous nucleation

• Solidification structure? Grains?

Stage 2:

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

> [https://www.doitpoms.ac.uk/tlplib/ solidification_alloys/dendritic.php]

"Chill" crystals grow into the liquid Common morphology in metals:

Dendrites

• Solidification structure? Grains?

Stage 3:

Dendrites keep growing Their arms impinge against each other

 \Rightarrow Columnar grains

• Solidification structure? Grains?

Columnar grains

- Coarse structure: not favourable for mechanical properties
- Impurities or alloying elements get "pushed" ahead of the solidification front
- \Rightarrow Segregation

• Solidification structure? Grains?

Stage 4:

Crystals nucleate on "dirt" and grow in the melt centre

\Rightarrow Equiaxed grains

• How can we improve the solidification structure?

Use of **inoculants** to favour equiaxed grain structure throughout the part

E.g.: Agl for ice

Outline

- Introduction
- Light alloys
 - Magnesium, Aluminium, Titanium
- Carbon steels
- Alloy steels
- Production, forming and joining of metals

Alloys with density \leq 4,5 kg/dm³

- 14 metallic elements with density \leq 4,5 kg/dm³
- 3 are useful for structural applications

Metal	Density (Mg m ⁻³)	$T_m(^{\circ}C)$	Comments	
Titanium	4.50	1667	High T _m – excellent creep resistance.	
Yttrium	4.47	1510	Good strength and ductility; scarce.	
Barium	3.50	729		
Scandium	2.99	1538	Scarce.	
Aluminium	2.70	660		
Strontium	2.60	770	Reactive in air/water.	
Caesium	1.87	28.5	Creeps/melts; very reactive in air/water.	
Beryllium	1.85	1287	Difficult to process; very toxic.	
Magnesium	1.74	649		
Calcium	1.54	839	Reactive in air/water.	
Rubidium	1.53	39		
Sodium	0.97	98	Creep/melt; very reactive	
Potassium	0.86	63	in air/water.	
Lithium	0.53	181		

 Table 10.1
 The light metals

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

- Mg, Al and Ti alloys were 1st developed for aerospace and transportation
- Mg and Ti alloys are also widely used in biomedical applications
- Al is also used in packaging (beverage can...)

 A good reference: "Light alloys - metallurgy of ligh metals" by I. Polmear, D. StJohn, J.F. Nie and Ma Qian, (2017) Available from ULiege library of electronic resources

- 3 main strengthening mechanisms
 - 1. Solid solution hardening
 - 2. Age (or precipitation) hardening
 - 3. Work hardening
- + another mechanism in (some) Ti alloys:
 - Martensitic transformation

Solid solution strengthening (1)

• Alloying elements may be dissolved in the crystallographic lattice of the main element

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

Solid solution strengthening (2)

- Alloying elements may be dissolved in the crystallographic lattice of the main element
- Solute atoms ≠ solvent atoms
 - ≠ size, stiffness, charge…
 - Solute atoms cause lattice distortion and interact with dislocations, making dislocations glide more difficult:

$$\sigma_y \propto \varepsilon_s^{3/2} C^{1/2}$$

with C: solute concentration,

and \mathcal{E}_s : mismatch between solute and solvent atoms

Solid solution strengthening (3)

5xxx Al alloys (= Al-Mg alloys)

Obtention of a supersaturated solid solution up to 5,5 wt% Mg 1. Solution treatment at 450°C

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

Solid solution strengthening (4)

5xxx Al alloys (= Al-Mg alloys)

Obtention of a supersaturated solid solution up to 5,5 wt% Mg

- Solution treatment at 450°C
- Rapid cooling down to R.T. (below 275°C)

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

Solid solution strengthening (5)

• 5xxx Al alloys (= Al-Mg alloys)

Obtention of a supersaturated solid solution up to 5,5 wt% Mg

- Solution treatment at 450°C
- 2. Rapid cooling below 275°C

Solid solution strengthening (6)

• 5xxx Al alloys (= Al-Mg alloys)

Alloy	wt% Mg	σ _y (MPa) (annealed condition)		
5005	0.8	40	<mark>σ</mark> , ↑↑	
5050	1.5	55		
5052	2.5	90		
5454	2.7	120		
5083	4.5	145		
5456	5.1	160		

Table 10.3 Yield strengths of 5000 series (Al-Mg) alloys

Solid solution strengthening (7)

- Solid solution strengthening may occur in other Al alloys (simultaneously with other strengthening mechanisms)
- In other light alloys
 - Ti-6Al-4V: strengthened by solid solution of Al and V
 - Mg alloys may be solution strengthened by Li, Al, Ag and Zn

Age (precipitation) hardening (1)

• In alloys with a miscibility gap!

Age (precipitation) hardening (2)

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

Age (precipitation) hardening (3)

Coarse widely spaced precipitates Easily avoided by dislocations

Small closely spaced precipitates Dislocations cannot get around them!

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

Age (precipitation) hardening (4)

In alloys with a miscibility gap!
 Al - 4 wt% Cu at 550°C

Age (precipitation) hardening (5)

- Driving force for precipitate coarsening: $\Delta A = -4\pi\gamma(-0.17r_2^2)$
- Slow cooling from 550°C \Rightarrow Diffusion is fast \Rightarrow Growth rate \uparrow (a)
- Nucleation rate \downarrow

[M.F. Ashby and D.R.H. Jones, Engineering Materials, v_{ol}^{36}]. 2]
Age (precipitation) hardening (6)

- Rapid cooling from 550°C = Quench
- \Rightarrow Supersaturated solid solution of Cu in Al

Avoid diffusive phase transformations

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

37

Age (precipitation) hardening (7)

- Rapid cooling from 550°C = Quench
- Isothermal hold at low T≈150°C = Ageing

Age (precipitation) hardening (8)

- Precipitation sequence is slow due to low atomic mobility. It is also more complex...
- At each stage: ≠ strengthening mechanisms

Age (precipitation) hardening (9)

- Other age-hardenable alloys
 - 6xxx and 7xxx Al alloys

Alloy series	Typical composition (wt%)	σ _y (MPa)	
		Slowly cooled	Quenched and aged
2000	Al + 4 Cu + Mg, Si, Mn	130	465
6000	Al + 0.5 Mg 0.5 Si	85	210
7000	Al + 6 Zn + Mg, Cu, Mn	300	570

Table 10.4 Yield strengths of heat-treatable alloys

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

- Mg alloys e.g.: AZ91 (9 wt% Al, 1 wt% Zn)

Work hardening (1)

- Hardening due to previous plastic strain
- $\sigma_y = A\varepsilon^n$ with A and *n* constants

Dislocations density \uparrow \Rightarrow Entanglement \Rightarrow Dislocations glide more difficult \Rightarrow Strength \uparrow \Rightarrow Work hardening

Work hardening (2)

 1xxx (CP AI), 3xxx (AI-Mn) and 5xxx (AI-Mg) Al alloys combine solid solution strengthening and work hardening

Alloy number	σ _y (MPa)		
	Annealed	"Half hard"	"Hard"
1100	35	115	145
3005	65	140	185
5456	140	300	370

 Table 10.5
 Yield strengths of work-hardened aluminium alloys

- Standard designations for **wrought Al alloys**: International Alloy Designation System for wrought products (IADS)
- Four digits number
 - 1st digit: major alloying element
 - 1xxx commercial purity Al
 - 2xxx Al-Cu alloys
 - 6xxx Al-Mg-Si alloys
 - 3rd and 4th digits identify the specific alloy composition (or purity level in 1xxx series)
 - 2d digit indicates purity level or alloy modification
- AA5xxx are Al-Mg alloys
 AA5082 and AA5083 are two different alloys
 AA5182 and 5282 are two variants of the same alloys (with very little differences in composition)

- Standard designations for **wrought** Al alloys: International Alloy Designation System for wrought products (IADS)
- Designation of **temper** (thermal or other treatments)
 - F : as-fabricated
 - O : annealed condition
 - H : strain hardened
 - T + digits : thermal treatment
 - T4 : solution treatment
 - T5 : rapid cooling after high T processing
 - T6 : solution treatment + quenching + artificial ageing

• Standard designations for **wrought** Al alloys: International Alloy Designation System for wrought products (IADS)

ALUMINIUM ALLOY AND TEMPER DESIGNATION SYSTEMS

[I.J. Polmear et al., Light alloys -Metallurgy of light metals]

• Standard designations for cast Al alloys US Aluminium Association System

0 /		,	
	Current designation	Former designatio	on
Aluminium, 99.00% or greater	1xx.x		
Aluminium alloys grouped by major	alloying elements:		
Copper	2xx.x	1xx	
Silicon with added copper and/or	3xx.x	3xx	
magnesium			
Silicon	4xx.x	1-99	
Magnesium	5xx.x	2xx	
Zinc	7xx.x	6xx	
Tin	8xx.x	7xx	
Other element	9xx.x	7xx	J. Poimear et al., Light alloys
Unused series	6xx.x	M	etailurgy of light metals]

 Table 5.1
 Four-digit system for aluminium and its alloys

Other system: British: LM + number + suffix for casting condition

- Standard designations for Mg alloys : ASTM Letters for main alloying elements
 - A : aluminium
 - E : rare earths (Sc, Y, Ce...)
 - M : manganese
 - S : silicium
 - Z:zinc

. . .

Examples: AZ91 : Mg + 9% Al + 1% Zn AM50 : Mg + 5% Al + 0,3 % Mn AS41 : Mg + 4% Al + 1% Si

Outline

- Introduction
- Light alloys
- Carbon steels
 - Carbon as main alloying element
- Alloy steels
- Production, forming and joining of metals

Steels

 A good reference: "Steels - microstructure and properties" by H.K.D.H. Bhadeshia and R.W.K. Honeycombe, (2006) Available from ULiege library

Carbon steels

Carbon as main alloying element

Carbon steels

 Large range of properties and usage depending on Carbon content and heat treatment

Metal	Typical composition (wt%)	Typical uses
Low-carbon ("mild") steel	Fe + 0.04 to 0.3 C (+ ≈ 0.8 Mn)	Low-stress uses. General constructional steel, suitable for welding.
Medium-carbon steel bolts,	Fe + 0.3 to 0.7 C $(+ \approx 0.8 \text{ Mp})$	Medium-stress uses: machinery parts – nuts and
High-carbon steel	Fe + 0.7 to 1.7 C (+ \approx 0.8 Mn)	High-stress uses: springs, cutting tools, dies.
Low-alloy steel	Fe + 0.2 C 0.8 Mn 1 Cr 2 Ni	High-stress uses: pressure vessels, aircraft parts.
High-alloy ("stainless") steel	Fe + 0.1 C 0.5 Mn 18 Cr 8 Ni	High-temperature or anti-corrosion uses: chemical or steam plants.
Cast iron	Fe + 1.8 to 4 C (+ ≈ 0.8 Mn 2 Si)	Low-stress uses: cylinder blocks, drain pipes.

Table 1.1 Generic iron-based metals

Use of carbon steels (1)

 Table 1.1 Generic iron-based metals

	Metal	Typical composition (wt%)	Typical uses
Wheels.			
frame +	Low-carbon ("mild") steel	Fe + 0.04 to 0.3 C (+ ≈ 0.8 Mn)	Low-stress uses. General constructional steel, suitable for welding.
 low loads 	Medium-carbon steel bolts,	Fe + 0.3 to 0.7 C	Medium-stress uses: machinery parts – nuts and
(σ.~220 MPa)		(+ ≈ 0.8 Mn)	shafts, gears.
• easy to cut,	High-carbon steel	Fe + 0.7 to 1.7 C (+ ≈ 0.8 Mn)	High-stress uses: springs, cutting tools, dies.
bend	Low-alloy steel	Fe + 0.2 C 0.8 Mn 1 Cr 2 Ni	High-stress uses: pressure vessels, aircraft parts.
 cheap 	High-alloy ("stainless") steel	Fe + 0.1 C 0.5 Mn 18 Cr 8 Ni	High-temperature or anti-corrosion uses: chemical or steam plants.
	Cast iron	Fe + 1.8 to 4 C (+ ≈ 0.8 Mn 2 Si)	Low-stress uses: cylinder blocks, drain pipes.

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2] $_{52}$

Use of carbon steels (2)

Table 1.1 Generic iror	-based metal	s
------------------------	--------------	---

	Metal	Typical composition (wt%)	Typical uses
Drive shafts,		(
gear-wheel	Low-carbon ("mild") steel	Fe + 0.04 to 0.3 C (+ ≈ 0.8 Mn)	Low-stress uses. General constructional steel, suitable for welding.
teeths 🔨	Medium-carbon steel bolts,	Fe + 0.3 to 0.7 C	Medium-stress uses: machinery parts – nuts and
• higher		(+ ≈ 0.8 Mn)	shafts, gears.
stresses	High-carbon steel	Fe + 0.7 to 1.7 C (+ ≈ 0.8 Mn)	High-stress uses: springs, cutting tools, dies.
(ơ _v ~400 MPa)	Low-alloy steel	Fe + 0.2 C 0.8 Mn 1 Cr 2 Ni	High-stress uses: pressure vessels, aircraft parts.
	High-alloy ("stainless") steel	Fe + 0.1 C 0.5 Mn 18 Cr 8 Ni	High-temperature or anti-corrosion uses: chemical or steam plants.
	Cast iron	Fe + 1.8 to 4 C (+ ≈ 0.8 Mn 2 Si)	Low-stress uses: cylinder blocks, drain pipes.

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2] $_{53}$

Use of carbon steels (3)

+ Heat treatment

 Table 1.1 Generic iron-based metals

[http://ww3.tiki.ne.jp/~hwata/eW-lubricator.htm]

	Metal	Typical composition (wt%)	Typical uses
Mechanical	Low-carbon ("mild") steel	Fe + 0.04 to 0.3 C	Low-stress uses. General constructional steel, suitable
High friction	Medium-carbon steel bolts,	Fe + 0.3 to 0.7 C	Medium-stress uses: machinery parts – nuts and
 Quenched and	High-carbon steel	Fe + 0.7 to 1.7 C (+ $\approx 0.8 \text{ Mn}$)	High-stress uses: springs, cutting tools, dies.
tempered high	Low-alloy steel	Fe + 0.2 C 0.8 Mn 1 Cr 2 Ni	High-stress uses: pressure vessels, aircratt parts.
carbon steels (o _y ~1000MPa)	High-alloy ("stainless") steel Cast iron	Fe + 0.1 C 0.5 Mn 18 Cr 8 Ni Fe + 1.8 to 4 C (+ ≈ 0.8 Mn 2 Si)	High-temperature or anti-corrosion uses: chemical or steam plants. Low-stress uses: cylinder blocks, drain pipes.

[M.F. Ashby and D.R.H. Jones, Engineering Materials, $\sqrt[54]{0}$. 2]

Normalised carbon steels

- "Off the shelf" steels
 - Microstructures produced by hot rolling + slow cooling
 - Close to equilibrium microstructures
 - \Rightarrow Phase diagram

[Wikimedia]

Ferritic steel (< 0,02 mass % C)

Ferritic steel (< 0,02 mass % C)

Ferritic steel (< 0,02 mass % C)

Eutectoid steel (0,77 mass % C)

Eutectoid steel (0,77 mass % C) Pearlite = Fe α + Fe₃C

[Baczmanski et al., MSF, 2014] 64

Eutectoid steel (0,77 mass % C)

Pearlite

Pro-eutectoid Fe α

[DoITPoMS, University of Cambridge] 69

Normalised carbon steels

- Mechanical properties
 - Strength ↑ with C ↑:
 Fe₃C acts as
 strengthening phase
 - Ductility \downarrow with C \uparrow : α - Fe₃C interfaces act as nucleation sites for cracks

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

And after fast cooling from austenite?

- Martensite = metastable phase that forms after fast cooling (quench) of C steel
- It forms by a **displacive** mechanism.
- It is very hard and brittle.
- It has a typical acicular morphology

[Christien et al., Mater. Char., 2013]

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]
Quenched and tempered carbon steels (1)

• Fast cooling \Rightarrow martensitic transformation

Quenched and tempered carbon steels (2)

- Martensite is very hard, due to Carbon supersaturation...
- ... but also brittle.

Quenched and tempered carbon steels (3)

• Tempering restores some ductility

Quenched and tempered carbon steels (4)

• Mechanical properties

Cast Irons (2)

Grey

White

[http://core.materials.ac.uk/ search/detail.php?id=1416]

[http://core.materials.ac.uk/ search/detail.php?id=1408]

Outline

- Introduction
- Light alloys
- Carbon steels
- Alloy steels
 - Low alloy, stainless or tool steels
- Production, forming and joining of metals

Alloy steels

Low alloy, stainless or tool steels

Role of alloying elements (1)

Alloying elements may modify

- Hardenability
- Strength, hardness
- Corrosion resistance
- Equilibrium structure (phases)

Hardenability

= Ease to form a fully martensitic structure

For a displacive transformation to occur, diffusive transformation should not take place!

Hardenability

= Ease to form a fully martensitic structure

Hardenability of large components ?

Oil quench on a bar with diameter = 95 mm

[http://www.totalmateria.com/articles/Art146.htm]

Core will be (partially) bainitic

Role of alloying elements (2)

Improve hardenability (Mo, Mn, Cr, Ni...)

 \Rightarrow Make it easier to obtain martensite even for large components

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

85

Effect of grain size

Hardenability also changes with grain size

 \Rightarrow Make it easier to obtain martensite even for **large** components

Role of alloying elements (3)

- Strengthening:
 - Solid solution
 - Precipitation
- Tool steels:
 - Dissolved W, Co

[J.T.Tchuindjang, ULg, 2005]

High Speed Steels (V, W, Mo, Cr)

– Alloyed carbides: VC, Mo₂C, WC, Cr₂₃C₆

Role of alloying elements (4)

- Corrosion resistance, Cr in stainless steels \Rightarrow passivating layer of Cr₂O₃
 - -> passivating layer or C

Role of alloying elements (5)

- Corrosion resistance,
 Cr in stainless steels ⇒
 passivating layer of Cr₂O₃
- Cr stabilizes ferrite

⇒ Other alloying elements are added to modify the structure of stainless steels

Increasing C content to make hardenable stainless steels

Role of alloying elements (6)

• Ni is added in stainless steels to stabilize austenite

Standard designations of steels (1)

- Most used: American Iron and Steel Institute (AISI) and Society of Automotive Engineers (SAE)
- Four digits
 - First two digits: Type of steel
 - Last two digits: amount of carbon
- Examples:
 - AISI 1020: plain carbon steel (10) with 0,2 wt% C (20)

- AISI 4340: Ni-Cr-Mo steel (43) with 0,4 wt% C (40)

• See https://www.engineeringtoolbox.com/aisi-sae-steelnumbering-system-d_1449.html

Standard designations of steels (2)

- Other classifications: German (DIN), French (AFNOR)...
- Table of correspondance:

Aciers pour décolletage

NF	UNI	DIN	W.Nr	EURONORM	AISI-SAE
A37Pb		-	-	-	÷
A60Pb			-	-	-
S250	CF9SMn28	9SMn28	-	115Mn28	-
S250Pb	CF9SMnPb28	9SMnPb28	-	11SMnPb28	-
\$300	-	9SMn36	-	-	-
S300Pb	CF9SMnPb36	9SMnPb36	0737	9SMnPb35	12L14
18MF5	-	-	-	17520	1117
45MF4	CF44SMnPb28	45\$20		45520	1146

Aciers de cémentation

NF	UNI	DIN	W.Nr	EURONORM	AISI-SAE
XC10	C10	CK10	1121	2C10	1010
XC18	C15	CK15	1171	2C15	1017
-	-	15Cr3	7015	15Cr2	-
16MC5	16MnCr5	16MnCr5	7131	16MnCr5	-
20MC5	20MnCr5	20MnCr5	7141		12
18CD4	18CrMo4	16CrMo1	(7242)	18CrMo4	-
-	12NiCr3	-	-	-	-
14NC11	16NiCr11	(14NiCr10)	(5732)	13NiCr12	-
-	16CrNi4	-	-	-	-
-	20CrNi4	-	-	-	-
20NCD2	20NiCrMo2	21NiCrMo2	6523	20NiCrMo2	8620
-	18NiCrMo5	-	-	17NiCrMo5	-
-	18NiCrMo7	-	-	-	4320
-	16NiCrMo12	-	-	-	-

Aciers pour traitement thermique

NF	UNI	DIN	W.Nr	EURONORM	AISI-SAE
XC25	C25	CK22	-	2C25	1025
XC32	C30		-	-	1030
(XC38)	C35	CK35	1181	2C35	1038
(XC42)	C40	-	1186	-	1042
(XC48)	C45	CK45	1191	2C45	1045
(XC48)	C50	CK50	1206	-	1050
XC55	C55	CK55	1203	2C55	1055
XC65	C60	CK60	1221	2C60	1065
42C4	41Cr4	41Cr4	7035	41Cr4	5147
-	36CrMn5	-	-	-	-
25CD4	25CrMo4	25CrMo4	7218	25CrMo4	-
30CD4	30CrMo4	-	-	-	4130
35CD4	35CrMo4	34CrMo4	7220	34CrMo4	4135
42CD4	42CrMo4	42CrMo4	7225	42CrMo4	4142
40NCD2	40NiCrMo2	(42NiCrMo2-2)	(6546)	40NiCrMo2	8640
40NCD3	39NiCrMo3	-	-	39NiCrMo3	-
-	40NiCrMo7	(40NiCrMo7-3)	(6562)	-	4340
-	30NiCrMo12	-	-	-	-
-	30NiCrMoV12	-	-	-	-
35NCD16	34NiCrMo16	(30NiCrMo16-6)	(6747)	34NiCrMo16	-

Aciers pour trempe superficielle

NF	UNI	DIN	W.Nr	EURONORM	AISI-SAE
XC42TS	C43	-	-	-	-
XC48	C48	CK45	-	C46	1045
-	38Cr4	38Cr4	7043	38Cr4	-
- 1	36CrMn4	-	-		-
42CD4TS	41CrMo4	41CrMo4	7223	41CrMo4	(4140)
40NCD3TS	40NiCrMo3	-	-	40NiCrMo3	-

Aciers pour roulement

NF	UNI	DIN	W.Nr	EURONORM	AISI-SAE
100C6	100Cr6	100Cr6	3505	100Cr6	52100
-	100CrMn4	(100CrMn6)	(3520)	(100CrMn6)	
100CD7	100CrMo7	W5	(3536)	(100CrMnMo7)	-

[http://www.directtransmission.fr/docs/guides /Michaud_Chailly_Techniqu e-correspondances-normesaciers.pdf]

or https://mdmetric.com/tech/InternationalMaterialGradeComparisonTable.pdf

Outline

- Introduction
- Light alloys
- Carbon steels
- Alloy steels
- Production, forming and joining of metals
 - Ingot casting
 - Rolling
 - Welding
 - 3D printing...

Production, forming and joining of metals

Ingot casting, rolling, welding, 3D printing...

Ingot casting

• Solidification structure?

Impurities or alloying elements get "pushed" ahead of the solidification front

[Grange, Metall. Trans., 1971]5

Ingot casting and banding

After rolling

TTO AND
the state of the state of the state of the
Interest and Descaled sees
b and a second s

Toughness

[Grange, Metall. Trans., 1971]

Ingot structure

Ingot vs continuous casting

Feed

 Contraction during solidification ⇒ Cavity

In continuous casting, liquid metal is fed continuously (no cavity) and columnar grains grow over smaller distance (segregation \downarrow)

Rolling, recovery and recristallisation (1)

- Rolling relies on plastic deformation
- \Rightarrow Work hardening may become a problem

Dislocations density↑ ⇒ Entanglement ⇒ Dislocations glide more difficult ⇒ Strength ↑ ⇒ Work hardening

[J. Lecomte-Beckers, Phys0904 "Physique des Matériaux"]

Rolling, recovery and recristallization (2)

- Rolling relies on plastic deformation
- \Rightarrow Work hardening may become a problem
- \Rightarrow Annealing to favour recovery/recristallization

Deformed structure

Recovery = organisation of crystalline defects

Recrystallization = formation of new grains

\neq structures $\Rightarrow \neq$ properties

[J. Lecomte-Beckers, Phys0904 "Physique des Matériaux"]

Welding steels (1)

\Rightarrow Risk of forming martensite in the HAZ for C content > 0,5 wt%

Welding steels (3)

Martensite is brittle + it is prone to H_2 embrittlement

[By Dako99 - Own work, CC BY-SA 3.0]¹⁰²

Welding steels (4)

Collapse of the Alexander Kielland oil platform (March 1980)

And this all started from a _ crack at a small fillet weld!

https://www.twi-global.com/newsevents/case-studies/alexander-l-kiellandaccommodation-platform-145/ [Norsk Oljemuseum -Norwegian Petroleum Museum]

[By Jarvin - Own work, CC BY 2.5]

3D printing of metals (1)

A metallic powder is simultaneously deposited and melted using a laser beam

One track // one weld bead

3D printing of metals (2)

High Speed Steels

- Cr, Mo, V, W to form hard carbides
- Fast cooling \Rightarrow Finer structure

3D printing

3D printing of metals (3)

High Speed Steels

- Cr, Mo, V, W to form hard carbides
- Fast cooling \Rightarrow Finer structure

 \Rightarrow Improved wear resistance

[N. Hashemi, ULg, 2017]

Summary

Materials selection: desired properties

- \Rightarrow Materials properties may be
 - structure independent (E,c_p...)
 - structure dependent (σ_v , fatigue resistance...)
- \Rightarrow Structure may be controlled by
 - Chemical composition (equilibrium)
 - All structural changes = History of the material

Production, forming and joining