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Introduction

Summary of previous lecture



Summary of Lecture I

• Aim: select the best material for a given application

• Many ≠ criteria must be taken into account

– Physical properties (density, conductivity...)

– Mechanical properties (yield stress, fatigue...)

– Corrosion resistance

– Bio-compatibility

– Processability, formability

– Cost

– ...
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Summary of Lecture I

• Aim: select the best material for a given application

• Many ≠ criteria must be taken into account

⇒ Need for a methodology

⇒ Need for database of materials properties

Structure-insensitive

vs 

structure-dependent
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Summary of Lecture I

• Materials with desired properties

• Some properties of metals are structure-dependent

– Crystalline vs amorphous structure

[http://www.majordifferences.com/2013/02/difference-

between-crystalline-and.html#.Wb42e9E69PY]
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Summary of Lecture I

• Materials selection to fulfill desired properties

• Some properties of metals are structure-dependent

– Phase = region of material with homogeneous properties 

(uniform physical and chemical properties)

– Example 1: liquid water  + ice = 2 different phases

– Example 2: Cu fully dissolved in Al = 1 phase

7

Solid solution



Summary of Lecture I

• Materials selection to fulfill desired properties

• Some properties of metals are structure-dependent

– Phase = region of material with homogeneous properties

Phases: solid solution, intermetallic compounds...

CuAl2 in Al-Cu alloys

vs (Al) solid solution

[http://deuns.chez.com/sciences

/cristallo/cristallo2.html]
[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]
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Summary of Lecture I

• Materials selection to fulfill desired properties

• Some properties of metals are structure-sensitive

– Metals are often 

polycristalline material

– Individual crystal = grain

⇒⇒⇒⇒ Grain size and shape

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2] 9



Summary of Lecture I

• Materials selection to fulfill desired properties

• Some properties of metals are structure-sensitive

– Grain size and shape

– Grain and interphase boundaries

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2] 10



Summary of Lecture I

• Materials selection to fulfill desired properties

• Some properties of metals are structure-sensitive

– Crystalline vs amorphous structure

– Phases (solid solution, intermetallic compounds...)

– Grain size and shapegrain and interphase boundaries

• How can we control the structure?

– Equilibrium (or stable) structure: 

by playing with the chemical composition
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Summary of Lecture I

• How can we control the 

structure?

– Equilibrium structure: 

A system is in 

equilibrium when its 

energy is minimized

Equilibrium = G 

minimum with G: 

enthalpy

– Phase diagram

L. Zhigilei, Phase diagrams and Kinetics, University of Virginia] 12



Summary of Lecture I

• How can we control the structure?

– Equilibrium structure: 

by playing with the chemical composition

e.g.: use the Pb-Sn phase diagram to select a solder 

material with low melting temperature

[M.F. Ashby and D.R.H. Jones, 

Engineering Materials, vol. 2] 13



Introduction

How can we control the structure of 

a metallic material?

⇒ Playing with structural change



Playing with structural change

• Example 1: plastic deformation

Creation and propagation of crystalline defects

Dislocations (TEM)

Edge dislocation

Screw dislocation

Twin

[J. Lecomte-Beckers, Phys0904 "Physique des Matériaux"]

Plastic deformation occurs by dislocations glide
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Playing with structural change

• Example 1: plastic deformation

Creation and propagation of crystalline defects

[J. Lecomte-Beckers, Phys0904 "Physique des Matériaux"]

Dislocations density↑
⇒ Entanglement

⇒ Dislocations glide 

more difficult

⇒ Strength ↑
⇒ Work hardening
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Playing with structural change

• Example 1: plastic deformation

Recovery and recrystallisation

[J. Lecomte-Beckers, Phys0904 "Physique des Matériaux"]

Deformed structure Recovery = organisation 

of crystalline defects

Recrystallization = 

formation of new grains

Grain size has a strong 

influence on properties!≠ structures ⇒⇒⇒⇒ ≠ proper�es
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Playing with structural change

• Example 1: plastic 

deformation

Practically: hot rolling
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Playing with structural change

• Example 2: Intermetallic compounds

Al-Cu alloys
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FCC Al
Al2Cu



Playing with structural change

• Example 2: Intermetallic compounds

Al-Cu alloys

Finely distributed intermetallics give more efficient 

strengthening than coarse precipitates

20
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Playing with structural change

• Example 2: Intermetallic compounds

Heat treatment to control the formation of Al2Cu and 

obtain optimized properties

1. Solution treatment 2. Quench (to keep Cu 

in solid solution)
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Hardness

Playing with structural change

• Example 2: Intermetallic compounds

Heat treatment to control the formation of Al2Cu and 

obtain optimized properties  (Hardness)

3. Ageing (formation of intermetallic Al2Cu precipitates)

⇒ Small coherent precipitatesLow T
[J. Lecomte-Beckers, Phys0904 "Physique des Matériaux"]
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Outline
• Introduction

• Driving force for structural change

– General principles

– Applications to phase transformations

• Kinetics I: diffusive transformation

• Kinetics II: nucleation

• Kinetics III: displacive transformation
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Driving force for structural 

change
When is it possible to change the 

structure of metallic materials?



Conditions for change

• Structural change is possible when there is a 

driving force for change

• Driving force = energy available for change or to 

do work

E.g.: Potential energy for a car moving downhill

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2] 25



Conditions for change

• Structural change is possible when there is a 

driving force for change

• Driving force = minimizing the free enthalpy for 

the allotropic transformations of pure Fe

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2] 26



Conditions for change

• To change from BCC to FCC structures, atoms 

need to move

⇒ Diffusion, rate =  f(T)

FCCBCC

[http://deuns.chez.com/sciences/cristallo/cristallo2.html] 27



Conditions for change

• Structural change is possible when there is a 

driving force for change

• Even if there is a driving force, change may not 

occur at a measurable pace/speed 

⇒ Route or mechanism for transformation?

⇒⇒⇒⇒ Kinetics!

[M.F. Ashby and D.R.H. Jones, Engineering 

Materials, vol. 2]

Atomic diffusion, rate = f(T)

FCCBCC

[http://deuns.chez.com/sciences/cristallo

/cristallo2.html]
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Driving force

For a car moving downhill

Wf = mgh

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

Free work Potential energy
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Driving force

For a car moving downhill

Wf ≤ mgh

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

Free work Potential energy

Part of the energy 

available will be lost 

(friction in wheel bearings, 

air resistance...)
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Driving force

For a car moving downhill

with an initial velocity v

Wf ≤ mgh + 1/2 mv2

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

Free work Potential 

energy
Kinetic 

energy

External energy

-∆N

Directed (non-random) movement
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Driving force

Generally:

Wf ≤ -∆N - ∆U

Free work
External 

energy
Internal energy

• intrinsic to the material

• chemical energy, thermal energy 

stored in atomic vibrations, 

elastic strain energy...
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Driving force

Generally:

Wf ≤ Q -∆N - ∆U

Free 

work

External 

energy

Internal 

energy

Heat can be turned into work, 

e.g. steam boiler
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Driving force

Generally:

W = Q -∆N - ∆U

Total 

work

External 

energy

Internal 

energy

Heat can be turned into work, 

e.g. steam boiler

Any energy lost in one way must re-appear somewhere else

1st law of thermodynamics = conservation of energy
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Driving force

What about Wf (free work)?

W = Q - ∆N - ∆U

W = Q - (U2 - U1) - (N2-N1)

We = p0 (V2 - V1)

Wf = W - We

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

T0, p0 = cst

V2 > V1 Dilatation 

of exhaust 

gases



Driving force

What about Wf (free work)?

W = Q - ∆N - ∆U

W = Q - (U2 - U1) - (N2-N1)

We = p0 (V2 - V1)

Wf = W - We

Wf = Q - (U2 - U1) - p0 (V2 - V1) - (N2-N1)

T0, p0 = cst



Reversibility ?

Reversible change: 2nd law of thermodynamics

dS = dQ/T with S: entropy

�� �	�� � �
�	
��

�	

But we don't know dQ(T) !?

(S2 - S1)car = - (S2-S1)environment

(S2 - S1)car =  - (S2-S1)environment = Q/T0

T0 cst !
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Driving force for reversible change

∆S = Q/T0

Then

Wf = Q - (U2 - U1) - p0 (V2 - V1) - (N2-N1)

can be rewritten as

Wf = - ∆U - p0∆V + T0∆S - ∆N

⇒ How much free work is available for driving a 

reversible change 
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Driving force for reversible change

Wf = - ∆U - p0∆V + T0∆S - ∆N

One can also write:

A = U + pV -TS where A: availability

H = U + pV where H: enthalpy

G = H - TS where G: free enthalpy
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Stability and metastability

Reminder of Lecture I

Intuitively:

A system is in equilibrium when it exhibits no 

further tendency to change with time

Thermodynamics:

A system is in equilibrium when its energy is 

minimized

Equilibrium = G minimum with G: free enthalpy

40



Stability and metastability

Equilibrium = G minimum

Relative minimum

Metastable equilibrium

Absolute minimum

Stable equilibrium

41



Stability and metastability

In the simple case where the energy of the 

system is expressed as potential energy

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2] 42



Outline
• Introduction

• Driving force for structural change

When is it possible to change the structure of 

metallic materials?

– General principles

– Applications to phase transformations

• Kinetics I: diffusive transformation

• Kinetics II: nucleation

• Kinetics III: displacive transformation
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Driving force for solidification

Water solidifies into ice (T, p cst)

– If p = 1 atm, Tm = 273 K

– Mixture of water and ice is in equilibrium

∆G = 0 = (U + pV -TmS)ice = (U +pV - TmS)water

= (H-TmS)ice = (H-TmS)water

⇒ ∆H = Tm∆S with ∆H: "latent heat of solidification"

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2] 44



Driving force for solidification

Water solidifies into ice (T, p cst)

– If p = 1 atm, T = 272 K (just below Tm)

– Water has a tendency to freeze

Wf = -[(H-TS)ice - (H-TS)water] > 0

Wf = - ∆H + T∆S

Assuming that ∆H and ∆S do not change much with T

Wf(T) = - ∆H + T(∆H/Tm) 

From calorimetry experiments, ∆H = - 334 kJ kg-1

Wf = 1,22 kJ kg-1

45



Driving force for solidification

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2] 46



Driving force for solid-state phase 

transformation

Same approach for

– the α - γ transition in Fe

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2] 47

BCC

α

γγγγ



Driving force for solid-state phase 

transformation

Same approach for

– the α - β transition in Ti

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2] 48

BCC

HCP

ββββ

α



Driving force for solid-state phase 

transformation

Same approach for

– the α - γ transition in Fe

– the α - β transition in Ti


� � � �
∆�

��
(�� � ��	

with �� the temperature at which the 2 solid phases are in 

equilibrium 
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Driving force for solid-state phase 

transformation


� � � �
∆�

��
(�� � ��	

with �� = 1155 K and ∆H = - 3,48 J mol-1

for the α - β transition in Ti

⇒ Wf = 3,0 J mol-1 for a T departure from Te of 1 K

⇒ Wf for solid-state transformation are ~ 1/3 of Wf for 

solidification
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Precipitate coarsening

Heat treatment to control the formation of Al2Cu and 

obtain optimized properties  (Hardness)

→ Why do we need to control the heat treatment?

⇒ Small coherent precipitates
Low T

[J. Lecomte-Beckers, Phys0904 "Physique des Matériaux"] 51

Hardness

Time



Precipitate coarsening

Driving force = Reducing the area of interface 

between the precipitates and the matrix

Assuming γ : energy of interface per unit area

For a precipitate with radius r, 

the interfacial energy is: 4πr2γ
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Precipitate coarsening

Driving force = Reducing the area of 

interface between the precipitates and 

the matrix
∆� � 4���

��	 � 4π��
��	 � 4π��

��

Conservation of volume:
4
3
���

� �	
4
3
���

� �	
4
3
���

�

⇒

∆� � 4��� ��
� � ��

�
�
� � 
��

� � ��
�)]

[M.F. Ashby and D.R.H. Jones, 

Engineering Materials, vol. 2]
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Precipitate coarsening

∆� � 4��� ��
� � ��

�
�
� � 
��

� � ��
�)]

When r1 = r2/2

⇒	∆� � �4��
�0,17��
�)

For incoherent precipitates, 

γ = 0,5 J m-2

If r2 = 10-7 m

Wf = 7 J mol-1

[M.F. Ashby and D.R.H. Jones, 

Engineering Materials, vol. 2]
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Precipitate coarsening

For incoherent precipitates, 

γ = 0,5 J m-2, and if r2 = 10-7 m

Wf = 7 J mol-1

It is a challenge to avoid coarsening!

One first possible way:

For coherent precipitates,

γ = 0,05 J m-2

Wf = 0,7 J mol-1

⇒ Select alloying elements for coherent precipitation

[M.F. Ashby and D.R.H. Jones, 

Engineering Materials, vol. 2]
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Other solid state changes

• Grain growth:

Grain boundary energy per unit area 

γ = 0,5 J m-2

• Recrystallisation:

Strain energy per unit volume ~15 J mol-1

Deformed 

structure

Recrystallised

new strain-

free grains
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Orders of magnitude
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Outline

• Introduction

• Driving force for structural change

• Kinetics I: diffusive transformation

• Kinetics II: nucleation

• Kinetics III: displacive transformation
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Kinetics of structural 

change:
1 - diffusive transformations



Speed of change?

• Structural change is possible when there is a 

driving force for change

• Even if there is a driving force, change may not 

occur at a measurable pace/speed 

⇒ Route or mechanism for transformation?

⇒⇒⇒⇒ Kinetics!

[M.F. Ashby and D.R.H. Jones, Engineering 

Materials, vol. 2]

Atomic diffusion, rate = f(T)

FCCBCC

[http://deuns.chez.com/sciences/cristallo

/cristallo2.html]
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Kinetics of solidification

Reminder: driving force for solidification

Wf = - ∆G

∆$ ≅ 	
∆�	

�&

�'	 � �� for small (Tm - T)

Kinetics of solidification:

How fast do atoms diffuse due to 

that driving force?

Speed ?

[M.F. Ashby and D.R.H. Jones, Engineering 

Materials, vol. 2] 61



Kinetics of solidification

Kinetics of solidification:

How fast do atoms diffuse ?

Atoms vibrate due to thermal agitation

A given atom has a probability p to 

possess an energy higher than q=3kTm

( � 	)
*+

,�&-

Speed ?

[M.F. Ashby and D.R.H. Jones, 

Engineering Materials, vol. 2]
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Kinetics of solidification

Based on probabilisitic considerations, the 

solidification rate is given by:

.	 ≈ 	
0
6ℎ

)
*+

,�- ∆3(�' − �)

�'

with

d: molecular/atomic diameter

h: Planck's constant
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Kinetics of solidification

Solidification rate: 

.	 / 	
0

62
)
*+

,�- ∆3
�' � ��
�'

[M.F. Ashby and D.R.H. Jones, 

Engineering Materials, vol. 2]

1st, solidification 

rate  increases 

below Tm

2nd, solidification rate 

decreases when T 

decreases further
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Kinetics of solid-state phase change

Driving force:

∆$ ≅ 	
∆3	

��
(��	 − �)

Transformation rate: 

.	 / 	
0

6ℎ
)
*+

,�- ∆3 �� − �

��
for a diffusive transformation
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Kinetics of diffusive transformation

Movement of atoms between 2 

phases

⇒ The 2 phases are already 

present

⇒ There are pre-existing nuclei

of the "new" phase

[M.F. Ashby and D.R.H. Jones, 

Engineering Materials, vol. 2]
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Outline

• Introduction

• Driving force for structural change

• Kinetics I: diffusive transformation

• Kinetics II: nucleation

• Kinetics III: displacive transformation
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Kinetics of structural 

change:
2 - nucleation



Kinetics of diffusive transformation

Movement of atoms between 2 phases

⇒ The 2 phases are already present

⇒ Nuclei of the "new" phase

⇒ 2 possible mechanisms for 

nucleation:

1. Homogeneous

2. Heterogeneous

[M.F. Ashby and D.R.H. Jones, 

Engineering Materials, vol. 2]
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Homogeneous nucleation

In a liquid, thermal agitation may bring together a 

small group of atoms to form a tiny crystal

1. If T>Tm, this tiny crystal will disappear

2. If T<Tm, this tiny crystal may remain stable and grow

⇒ What is the probability of finding a stable 

nucleus at T< Tm?
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Homogeneous nucleation

What is the probability of finding a stable nucleus at 

T< Tm?

• Driving force: ∆$ ≅ 	
∆�	

�&
�'	 − � , accounting for 

the volume of the nucleus with radius r:
4

3
��� 	

∆3	

�'
�'	 − �

• Work to create the solid-liquid interface:

4����45 Interfacial 

energy

71



Homogeneous nucleation

Work of nucleation

Wf � 	4����45 	

�	
4
3
��� 	

∆3	
�'

�'	 � �

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

Unstable 

nucleus

Stable 

nucleus
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Homogeneous nucleation

Critical radius:
0
�

0�
� 0

�∗ �
2�45�'

∆3 
�' � ��

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

Unstable 

nucleus

Stable 

nucleus
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Homogeneous nucleation

Critical radius: �∗ �
�:;<�&

∆� (�&*�)

Formation of a nucleus that is big enough is not 

likely!

For homogeneous nucleation to happen, 

(Tm - T) ≈ 100 K  i.e. huge undercooling!

⇒ Heterogeneous nucleation much more frequent!
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Heterogeneous nucleation

"Dirt" particles act as solid catalysts for nucleation

Pre-existing particle helps stabilise solid nuclei

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]75



Heterogeneous nucleation

Critical radius

�∗ �
2�45�'

∆3 
�' � ��
is the same as for 

homogeneous nucleation

But the volume of the 

criUcal nucleus is ≠!

Nucleus = spherical capContact angle θ

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]
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Heterogeneous nucleation

Volume of critical nucleus:

=>�?
∗ 	� 	

2

3
�
�>�?

∗ )� 1 −
3
2
cos C �

1
2
DEF�C

While =>G'
∗ �

H

�
�(�>G'

∗ )�

Contact angle θ

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]
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Heterogeneous nucleation

Take a nucleus formed by 102 atoms and θ = 10°

=>�?
∗ and =>G'

∗

⇒ �>�?
∗ and �>G'

∗ ?

�>�?
∗ � 18,1�>G'

∗

⇒ Heterogeneous nuclei

are always bigger!

[M.F. Ashby and D.R.H. Jones, 

Engineering Materials, vol. 2]
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Heterogeneous nucleation

Take a nucleus formed by 102 atoms and θ = 10°

�>�?
∗ � 18,1�>G'

∗

⇒ Undercooling:

�' − �>�? �
�' − �>G'

18,1
	

/ 5K
[M.F. Ashby and D.R.H. Jones, 

Engineering Materials, vol. 2]
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Nucleation in solids

• Heterogeneous nucleation on crystalline defects

Dislocations (TEM)

Edge dislocation

Screw dislocation

[J. Lecomte-Beckers, Phys0904 "Physique des Matériaux"]
[M.F. Ashby and D.R.H. Jones, 

Engineering Materials, vol. 2]

Dislocations Free surface

Grain boudary
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Outline

• Introduction

• Driving force for structural change

• Kinetics I: diffusive transformation

• Kinetics II: nucleation

• Kinetics III: displacive transformation
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Kinetics of structural 

change:
3 - displacive transformations



Reminder "Physics of Materials"

Phase transformations in steel may occur by 

≠ mechanisms

Diffusion

DisplacementCoordinated shuffling of atoms

[http://deuns.chez.com/sciences/

cristallo/cristallo2.html]

[M.F. Ashby and D.R.H. Jones, 

Engineering Materials, vol. 2]
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Transformations in C steels 

[M.F. Ashby and D.R.H. Jones, 

Engineering Materials, vol. 2]

Diffusion

⇒ Pearlite

[Baczmanski et al., MSF, 2014]

Displacement

⇒ Martensite

[Christien et al., Mater. Char., 2013]

High hardness

84

Same chemical composition, 

but different structures

⇒⇒⇒⇒ Different mechanical 

properties



Martensite

• What is martensite in steel?

⇒⇒⇒⇒ 18% of correct answers in last week test!

• Martensite = metastable phase that forms 

after fast cooling (quench) of C steel 

• It forms by a displacive mechanism.

• It is very hard and brittle.
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Transformations in C steels 

[M.F. Ashby and D.R.H. Jones, 

Engineering Materials, vol. 2]

Diffusion ⇒ Pearlite

[Baczmanski et al., MSF, 2014]

Diffusion is thermally activated!

Interface velocity varies with T

Interface velocity

What is the overall rate of 

transformation (transformed 

volume per second)?
86



Transformation in C steels 

Diffusive transformation: Overall rate of transformation

• We know the interface velocity

• We need to know the area of interface

− area of interface = f(number of nuclei)

− Fewer nuclei means smaller interfacial area and a 

smaller transformaiton rate

⇒⇒⇒⇒ Overall rate ∝∝∝∝ number of nuclei * interface velocity
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Transformation in C steels 

Overall rate ∝∝∝∝ number of nuclei * interface velocity

For heterogeneous nucleation on grain boundaries:

�∗ �
�:LM��

∆� (��*�)
: critical radius ↓ when T ↓

However, when T ↓, thermal energy and agitation ↓ , and 

so does the probability of forming a nucleus

(varies with T)

Does it vary with T?
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Transformation in C steels 

Number of nuclei

• Critical radius ↓ when T ↓

• Thermal energy and 

agitation ↓

⇒ Probability of forming a 

nucleus ↓

(varies with T)

Maximum rate at 700°C

[M.F. Ashby and D.R.H. Jones, 

Engineering Materials, vol. 2] 89



Transformation in C steels 

Overall rate ∝∝∝∝ number of nuclei * interface velocity

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2] 90



Transformation in C steels 

Overall rate ∝∝∝∝ number of nuclei * interface velocity

X

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]
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Transformation in C steels 

Overall rate ∝∝∝∝ number of nuclei * interface velocity

TTT Diagram

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

(See course "Physics of Materials")

Practically, overall kinetics for 

diffusive transformations are 

described by "C-curves".
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Transformation in C steels 

For a displacive transformation to occur, diffusive 

transformation should not take place!

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

(See course "Physics of Materials")

Critical quench rate

Driving force for transformation 

becomes so high that the 

transformation occurs

• without diffusion

• by coordinated shuffling of 

atoms at speed ∼ sound

→ Athermal transformaUon
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Transformation in C steels 

Displacive vs diffusive transformations

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]
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Martensitic transformation in C steels 

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

• Martensite forms as 

lenses coherent with the 

parent FCC lattice

• As the lenses grow, lattice 

planes distort: driving 

force is consumed as 

strain energy
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Martensitic transformation in C steels 

Typical morphology in laths or needles

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

[Christien et al., Mater. Char., 2013]

96



Summary

Materials selection: desired properties

⇒ Materials properties may be

– structure independent (E,cp...)

– structure dependent (σy, fatigue resistance...)

⇒ Controlling/changing the structure

• Is change possible? → Driving force

• Is change measurable? → KineUcs→ Mechanisms

– Diffusion

– Displacement

– Nucleation

Assume the pre-existence then 

growth of nuclei of the new phase
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