"MECA0462-2 : Materials Selection", 18/09/2018

Metals I

Anne Mertens

Outline

- Introduction
 - Metallic materials
 - Materials Selection: case studies in metallic materials
- Metal structures
- Equilibrium constitution and phase diagrams
- Case studies in phase diagrams

Introduction

Metallic materials

Introduction - Metals (1)

Large variety of metallic materials!

Introduction : Metals (2)

- Cohesion due to metallic bond
 - Electrostatic attractive force between an electron cloud of delocalized electrons and positively charged metal ions
 - Non directional
- Metallic materials:
 - Generally good conductor of electricity and heat
 - Relatively ductile \Rightarrow good formability

Introduction

Materials Selection : Case studies in metallic materials

Materials selection for model steam engine (1)

[http://www.hobbydownloads.com/steamgeneral.html]

Ex: Boiler components must withstand high T

[http://www.hobbydownloads.com/boilers.html]

Fully working model

- − ≠ components
- ≠ requirements
- ≠ materials

Materials selection for model steam engine (2)

Use of ferrous alloys

Table	1.1	Generic	iron-based	metals	
-------	-----	---------	------------	--------	--

	Metal	Typical composition (wt%)	Typical uses
Wheels,			
frame '	Low-carbon ("mild") steel	Fe + 0.04 to 0.3 C (+ ≈ 0.8 Mn)	Low-stress uses. General constructional steel, suitable for welding.
• low loads	Medium-carbon steel bolts,	Fe + 0.3 to 0.7 C	Medium-stress uses: machinery parts – nuts and
(σ.~220 MPa)		(+ ≈ 0.8 Mn)	shafts, gears.
• easy to cut,	High-carbon steel	Fe + 0.7 to 1.7 C (+ ≈ 0.8 Mn)	High-stress uses: springs, cutting tools, dies.
bend	Low-alloy steel	Fe + 0.2 C 0.8 Mn 1 Cr 2 Ni	High-stress uses: pressure vessels, aircraft parts.
 cheap 	High-alloy ("stainless") steel	Fe + 0.1 C 0.5 Mn 18 Cr 8 Ni	High-temperature or anti-corrosion uses: chemical or steam plants.
	Cast iron	Fe + 1.8 to 4 C (+ ≈ 0.8 Mn 2 Si)	Low-stress uses: cylinder blocks, drain pipes.

Materials selection for model steam engine (3)

Use of ferrous alloys

Table 1.1	Generic	iron-based	metals
-----------	---------	------------	--------

	Metal	Typical composition (wt%)	Typical uses
Drive shafts,		(1110)	
gear-wheel	Low-carbon ("mild") steel	Fe + 0.04 to 0.3 C (+ ≈ 0.8 Mn)	Low-stress uses. General constructional steel, suitable for welding.
teeths 🔨	Medium-carbon steel bolts,	Fe + 0.3 to 0.7 C	Medium-stress uses: machinery parts – nuts and
• higher		(+ ≈ 0.8 Mn)	shafts, gears.
stresses	High-carbon steel	Fe + 0.7 to 1.7 C (+ ≈ 0.8 Mn)	High-stress uses: springs, cutting tools, dies.
(ơ _v ~400 MPa)	Low-alloy steel	Fe + 0.2 C 0.8 Mn 1 Cr 2 Ni	High-stress uses: pressure vessels, aircraft parts.
	High-alloy ("stainless") steel	Fe + 0.1 C 0.5 Mn 18 Cr 8 Ni	High-temperature or anti-corrosion uses: chemical or steam plants.
	Cast iron	Fe + 1.8 to 4 C (+ ≈ 0.8 Mn 2 Si)	Low-stress uses: cylinder blocks, drain pipes.

Materials selection for model steam engine (3)

Use of ferrous alloys

 Table 1.1 Generic iron-based metals

[http://ww3.tiki.ne.jp/~hwata/eW-lubricator.htm]

	Metal	Typical composition (wt%)	Typical uses
Mechanical lubricator • High friction	Low-carbon ("mild") steel Medium-carbon steel bolts,	Fe + 0.04 to 0.3 C (+ ≈ 0.8 Mn) Fe + 0.3 to 0.7 C	Low-stress uses. General constructional steel, suitable for welding. Medium-stress uses: machinery parts – nuts and
and wear	,	(+ ≈ 0.8 Mn)	shafts, gears.
• Quenched and	High-carbon steel	Fe + 0.7 to 1.7 C (+ ≈ 0.8 Mn)	High-stress uses: springs, cutting tools, dies.
tempered high	Low-alloy steel	Fe + 0.2 C 0.8 Mn 1 Cr 2 Ni	High-stress uses: pressure vessels, aircratt parts.
carbon steels (σ _y ~1000MPa)	High-alloy ("stainless") steel Cast iron	Fe + 0.1 C 0.5 Mn 18 Cr 8 Ni Fe + 1.8 to 4 C (+ ≈ 0.8 Mn 2 Si)	High-temperature or anti-corrosion uses: chemical or steam plants. Low-stress uses: cylinder blocks, drain pipes.

Materials selection for model steam engine (5)

Use of ferrous alloys

 Table 1.1 Generic iron-based metals

S	Metal	Typical composition (wt%)	Typical uses
	Low-carbon ("mild") steel	Fe + 0.04 to 0.3 C (+ \approx 0.8 Mn)	Low-stress uses. General constructional steel, suitable for welding.
	bolts,	re + 0.3 to 0.7 C (+ ≈ 0.8 Mn)	shafts, gears.
	High-carbon steel	Fe + 0.7 to 1.7 C (+ ≈ 0.8 Mn)	High-stress uses: springs, cutting tools, dies.
	Low-alloy steel	Fe + 0.2 C 0.8 Mn 1 Cr 2 Ni	High-stress uses: pressure vessels, aircraft parts.
	High-alloy ("stainless") steel	Fe + 0.1 C 0.5 Mn 18 Cr 8 Ni	High-temperature or anti-corrosion uses: chemical or steam plants.
	Cast iron	Fe + 1.8 to 4 C (+ ≈ 0.8 Mn 2 Si)	Low-stress uses: cylinder blocks, drain pipes.

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

Fire grates

- High T
- Oxidation
- Creep

Materials selection for model steam engine (6)

Use of ferrous alloys

[http://core.materials.ac.uk/S EARCH/detail.php?id=1415]

 Table 1.1
 Generic iron-based metals

Metal	Typical composition (wt%)	Typical uses
Low-carbon ("mild") steel	Fe + 0.04 to 0.3 C (+ ≈ 0.8 Mn)	Low-stress uses. General constructional steel, suitable for welding.
Medium-carbon steel bolts,	Fe + 0.3 to 0.7 C	Medium-stress uses: machinery parts – nuts and
Link on tool	$(+ \approx 0.8 \text{ Mn})$	shafts, gears. High stress was anning outling tools dies
Fligh-carbon steel	re + 0.7 to 1.7 C (+ ≈ 0.8 Mn)	High-stress uses: springs, cutting tools, dies.
Low-alloy steel	Fe + 0.2 C 0.8 Mn 1 Cr 2 Ni	High-stress uses: pressure vessels, aircraft parts.
High-alloy ("stainless") steel	Fe + 0.1 C 0.5 Mn 18 Cr 8 Ni	High-temperature or anti-corrosion uses: chemical or steam plants.
Cast iron	Fe + 1.8 to 4 C (+ ≈ 0.8 Mn 2 Si)	Low-stress uses: cylinder blocks, drain pipes.

- stressesEasy to
- Easy to cast
- Graphite acts as lubricant

Materials selection for model steam engine (7)

Use of other alloys

[http://www.hobbydownloads.com/boilers.html]

- Boiler and firetubes
 - Load from pressurized steam
 - High thermal conductivity
 - Corrosion resistance in clean water

Materials selection for model steam engine (8) Copper alloys

- Boiler and firetubes
 - High thermal conductivity

- Corrosion resistance in clean water
- High cost (prohibitive in full size \Rightarrow mild steel)

Metal	Typical composition (wt%)	Typical uses
Copper	100 Cu	Ductile, corrosion resistant and a good electrical conductor: water pipes, electrical wiring.
Brass	Zn	Stronger than copper, machinable, reasonable corrosion resistance: water fittings, screws, electrical components.
Bronze Cupronickel	Cu + 10–30 Sn Cu + 30 Ni	Good corrosion resistance: bearings, ships' propellers, bells. Good corrosion resistance, coinage.

 Table 1.2
 Generic copper-based metals

Materials selection for beverage can (1)

- Strong requirements
 - No seam, no leak
 - Use as little metal as possible
 - Light
 - High formability
 - Recyclable
 - Not toxic
 - Corrosion resistance (even in coke that is highly acid)
 - Cheap

Materials selection for beverage can (2)

• Aluminium alloys

Table 1.4 Generic aluminium-based metals

Metal	Typical composition (wt%)	Typical uses
1000 Series unalloyed Al 2000 Series major additive Cu	> 99 Al Al + 4 Cu + Mg, Si, Mn	Weak but ductile and a good electrical conductor: power transmission lines, cooking foil. Strong age-hardening alloy: aircraft skins, spars, forgings, rivets.
3000 Series major additive Mn	Al + 1 Mn	Moderate strength, ductile, excellent corrosion resistance: roofing sheet, cooking pans, drinks can bodies.
5000 Series major additive Mg	Al + 3 Mg 0.5 Mn	Strong work-hardening weldable plate: pressure vessels, ship superstructures.
major additives Ma + Si	AI + 0.5 Mg 0.5 SI	extruded sections, e.g. window frames.
7000 Series major additives Zn + Mg	Al + 6 Zn + Mg, Cu, Mn	Strong age-hardening alloy: aircraft forgings, sparts, lightweight railway carriage shells.
Casting alloys Aluminium– lithium alloys	Al + 11 Si Al + 3 Li	Sand and die castings. Low density and good strength: aircraft skins and spars.

Materials selection for artificial hip joints (1)

- Requirements:
 - Large loads
 - High resistance to bending
 - Resistance to high-cycle fatigue
 - Resistance to corrosion in body fluids
 - Bio-compatibility
 - Light (density prosthesis = density bone)

[https://www.newsmedical.net/Accolade-C-Femoral-Component-from-Stryker]

Materials selection for artificial hip joints (2)

• Titanium alloys

Metal	Typical composition (wt%)	Typical uses
α – β titanium alloy	Ti-6 A14 V	Light, very strong, excellent corrosion resistance, high melting point, good creep resistance. The alloy workhorse: turbofans, airframes, chemical plant, surgical implants.

Partial summary (1)

- Materials selection $\Rightarrow \neq$ criteria
 - Physical properties (density, conductivity...)
 - Mechanical properties (yield stress, fatigue...)
 - Corrosion resistance
 - Bio-compatibility
 - Processability, formability
 - Cost

 Table 1.6
 Properties of the generic metals

Metal	Cost (UK£ (US\$) tonne ⁻¹)	Density (Mg m⁻³)	Young's modulus (GPa)	Yield strength (MPa)	Tensile strength (MPa)
Iron Mild steel High-carbon steel Low-alloy steels High-alloy steels Cast irons	100 (140) 200-230 (260-300) 150 (200) 180-250 (230-330) 1100-1400 (1400-1800) 120 (160)	7.9 7.9 7.8 7.8 7.8 7.8 7.4	211 210 210 203 215 152	50 220 350–1600 290–1600 170–1600 50–400	200 430 650–2000 420–2000 460–1700 10–800
Copper Brasses Bronzes	1020 (1330) 750–1060 (980–1380) 1500 (2000)	8.9 8.4 8.4	130 105 120	75 200 200	220 350 350
Nickel Monels Superalloys	3200 (4200) 3000 (3900) 5000 (6500)	8.9 8.9 7.9	214 185 214	60 340 800	300 680 1300
Aluminium 1000 Series 2000 Series 5000 Series 7000 Series	910 (1180) 910 (1180) 1100 (1430) 1000 (1300) 1100 (1430)	2.7 2.7 2.8 2.7 2.8	71 71 71 71 71 71	25-125 28-165 200-500 40-300 350-600	70-135 70-180 300-600 120-430 500-670

Table 1.6 Properties of the generic metals

Metal	Cost (UK£ (US\$) tonne ⁻¹)	Density (Mg m ⁻³)	Young's modulus (GPa)	Yield strength (MPa)	Tensile strength (MPa)
Iron Mild steel High-carbon steel Low-alloy steels High-alloy steels Cast irons	100 (140) 200-230 (260-300) 150 (200) 180-250 (230-330) 1100-1400 (1400-1800) 120 (160)	7.9 7.9 7.8 7.8 7.8 7.8 7.4	211 210 210 203 215 152	50 220 350–1600 290–1600 170–1600 50–400	200 430 650-2000 420-2000 460-1700 10-800
Copper Brasses Bronzes	1020 (1330) 750–1060 (980–1380) 1500 (2000)	8.9 8.4 8.4	130 105 120	75 200 200	220 350 350
Nickel Monels Superalloys	3200 (4200) 3000 (3900) 5000 (6500)	8.9 8.9 7.9	214 185 214	60 340 800	300 680 1300
Aluminium 1000 Series 2000 Series 5000 Series 7000 Series Casting alloys	910 (1180) 910 (1180) 1100 (1430) 1000 (1300) 1100 (1430) 1100 (1430)	2.7 2.7 2.8 2.7 2.8 2.7 2.8 2.7	71 71 71 71 71 71 71	25-125 28-165 200-500 40-300 350-600 65-350	70-135 70-180 300-600 120-430 500-670 130-400

Table 1.6 Properties of the generic metals

Metal	Cost (UK£ (US\$) tonne ⁻¹)	Density (Mg m ⁻³)	Young's modulus (GPa)	Yield strength (MPa)	Tensile strength (MPa)
Iron Mild steel High-carbon steel Low-alloy steels High-alloy steels Cast irons	100 (140) 200-230 (260-300) 150 (200) 180-250 (230-330) 1100-1400 (1400-1800) 120 (160)	7.9 7.9 7.8 7.8 7.8 7.8 7.4	211 210 210 203 215 152	50 220 350-1600 290-1600 170-1600 50-400	200 430 650-2000 420-2000 460-1700 10-800
Copper Brasses Bronzes	1020 (1330) 750–1060 (980–1380) 1500 (2000)	8.9 8.4 8.4	130 105 120	75 200 200	220 350 350
Nickel Monels Superalloys	3200 (4200) 3000 (3900) 5000 (6500)	8.9 8.9 7.9	214 185 214	60 340 800	300 680 1300
Aluminium 1000 Series 2000 Series 5000 Series 7000 Series Casting alloys	910 (1180) 910 (1180) 1100 (1430) 1000 (1300) 1100 (1430) 1100 (1430)	2.7 2.7 2.8 2.7 2.8 2.7 2.8 2.7	71 71 71 71 71 71	25-125 28-165 200-500 40-300 350-600 65-350	70-135 70-180 300-600 120-430 500-670 130-400

- Properties of metallic materials may be
 - structure independent...
 (= f(composition))
 e.g.: Young's modulus...
 - ... vs structure dependent
 (=f(composition, (micro)structure → processing))
 e.g.: yield strength, tensile strength...
- One must be really careful when dealing with structure-dependent properties!
 - influenced by cold deformation, heat treatments...

Metal structures

How do we describe the structure of a metal?

[http://www.majordifferences.com/2013/02/difference-between-crystalline-and.html#.Wb42e9E69PY]

• Packing of atoms inside the materials

Common crystalline structures of pure metals

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

Pure metal	Structure	Unit cell dimensions (nm)		
		a	с	
Aluminium	f.c.c.	0.405		
Beryllium	c.p.h.	0.229	0.358	
Cadmium	c.p.h.	0.298	0.562	
Chromium	b.c.c.	0.289		
Cobalt	c.p.h.	0.251	0.409	
Copper	f.c.c.	0.362		
Gold	f.c.c.	0.408		
Hafnium	c.p.h.	0.320	0.506	
Indium	Face-centred tetragonal			
Iridium	f.c.c.	0.384		
Iron	b.c.c.	0.287		
Lanthanum	c.p.h.	0.376	0.606	
Lead	f.c.c.	0.495		
Magnesium	c.p.h.	0.321	0.521	
Manganese	Cubic	0.891		
Molvbdenum	b.c.c.	0.315		
Nickel	f.c.c.	0.352		
Niobium	b.c.c.	0.330		
Palladium	f.c.c.	0.389		
Platinum	f.c.c.	0.392		
Rhodium	f.c.c.	0.380		
Silver	f.c.c.	0.409		
Tantalum	b.c.c.	0.331		
Thallium	c.p.h.	0.346	0.553	
Tin	Body-centred tetragonal			
Titanium	c.p.h.	0.295	0.468	
Tungsten	b.c.c.	0.317		
Vanadium	b.c.c.	0.303		
Yttrium	c.p.h.	0.365	0.573	
Zinc	c.p.h.	0.267	0.495	
Zirconium	c.p.h.	0.323	0.515 27	

Table 2.2 Crystal structures of pure metals at room temperature

Polymorphism

 Some metals may change crystalline structure depending on external conditions (p, T)
 e.g.: Fe and Ti

 Polymorphism may be controlled by alloying e.g.: addition of Ni in steel ⇒ FCC at Room T

Solutions vs compounds (1)

- Metals are rarely used in pure state
 - Addition elements \Rightarrow Alloys
 - Alloying elements may be dissolved in the crystalline lattice of the main element
 - Up to the solubility limit

Interstitial solution e.g.: C in Fe

Substitutional solution

Solutions vs compounds (2)

- [alloying element] < solubility limit
- Solutions may be random, but clustering or ordering are also possible

Random

Clustered

Ordered

Solutions vs compounds (3)

- [alloying element] > solubility limit
- Excess precipitates forming a new intermetallic compound (with its own crystalline structure)
 - Cu addition in Aluminium: Formation of CuAl₂

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

FCC structure of Al

[http://deuns.chez.com/sciences /cristallo/cristallo2.html] ³¹ Solutions vs compounds (4)

- [alloying element] > solubility limit
- Excess precipitates forming a new intermetallic compound
 - Solubility limit of C in BCC Fe at R.T.: 10⁻⁵ mass %
 - Excess C forms cementite (Fe₃C)

Phases (1)

Phase = region of a material that has uniform physical and chemical properties

Phases (2)

- Liquid water = one phase
 Ice = one phase
 Liquid water + ice = two phases
- Cu fully dissolved in Al
 = one solid solution
 = one phase
- [Cu] > solubility limit in Al
 Al (solid solution) + CuAL (pressure)
 - = Al (solid solution) + CuAl₂ (precipitates)
 - = two phases

Grain and phase boundaries (1)

- A pure metal or a solid solution are single-phase systems...
- ... but they are usually made of many crystals (with the same crystalline structure and chemical composition)
- Individual small crystal = grain

Grain and phase boundaries (2)

- Two-phases metallic materials are also made from many grains of each of the phases
- Interphase boundaries: ≠ types

Coherency strain

Nature of interphase boundaries may affect material properties!

Grain and phase boundaries (3)

• Precipitates may take ≠ shape/morphology

Partial summary (2)

- Some properties (e.g.: yield strength) are influenced by the structure of the material.
 - Crystalline (or amorphous) structure
 - Phases (solid solution, intermetallic compounds...)
 - Size and shape of grains
 - Interphase boundaries
- Structure is determined by
 - Chemical composition
 - Processing method (deformation, heat treatments...)

Outline

- Introduction
- Metal structures

How can we understand/control the structure of a metallic material? Today

- Influence of chemical composition?
- Equilibrium constitution and phase diagrams
- Case studies in phase diagrams

– Influence of processing method?

Next week

Equilibrium constitution and phase diagrams

How do we describe the influence of the chemical composition and external conditions (T,p) on the structure of a metallic materials?

Equilibrium (1)

Intuitively:

A system is in equilibrium when it exhibits no further tendency to change with time

Equilibrium (2)

Intuitively:

A system is in equilibrium when it exhibits no further tendency to change with time

Thermodynamics:

A system is in equilibrium when its energy is minimized

Equilibrium (2)

Intuitively:

A system is in equilibrium when it exhibits no further tendency to change with time

Thermodynamics:

A system is in equilibrium when its energy is minimized

Equilibrium = G minimum with G: enthalpy

Phase diagrams

G A liquid

 $G_A^{\,\text{solid}}$

- x_B : fraction of element B
 1-x_B : fraction of element A
- Atmospheric pressure
- Equilibrium = G minimum
- Equilibrium state of a binary system (A,B) at T₃
 - 2 phases are present (liquid, solid)
 - Compositions of each phase
 - Fractions of each phase

 T_3

solid +

solid

 G^{solid}

Gliquid

G B solid

G B B

[L. Zhigilei, Phase diagrams and Kinetics, University of Virginia]

Reading phase diagrams: The Lever Rule

- Binary system with 2 phases
 (α, β)
- Relative fractions of each phase

$$W_{\alpha} = (C_{\beta} - C_0) / (C_{\beta} - C_{\alpha})$$
$$W_{\beta} = (C_0 - C_{\alpha}) / (C_{\beta} - C_{\alpha})$$

[L. Zhigilei, Phase diagrams and Kinetics, University of Virginia]

Example: Al-Cu alloys (1)

Example: Al-Cu alloys (2)

Example: Al-Cu alloys (3)

Example: Pb-Sn alloys (1)

Common alloys for solder

Example: Pb-Sn alloys (2)

- Consider an alloy with 50% Pb and 50% Sn
- Number of phases at R.T.: 2 (Sn) and (Pb)

Example: Pb-Sn alloys (3)

- Consider an alloy with 50% Pb and 50% Sn
- Composition of (Pb) at R.T.: 2 wt% Sn.

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

Example: Pb-Sn alloys (4)

- Consider an alloy with 50% Pb and 50% Sn
- Fraction of (Pb) at R.T.: (50-0,3)/(98-0,3)=50,9 %

Example: Pb-Sn alloys (5)

- Consider an alloy with 50% Pb and 50% Sn
- Shape and size of (Sn) and (Pb)?
 - Not from phase diagrams
 - Depend on processing method

 \Rightarrow Deformation, heat treatments (isothermal hold, cooling rate...)

- How can we use phase diagrams for materials selection?
- \Rightarrow Case studies in phase diagrams

Outline

- Introduction
- Metal structures
- Equilibrium constitution and phase diagrams
- Case studies in phase diagrams
 - Materials for soft solders

Case studies in phase diagrams

Selecting a material for soft solders

Solder materials (1)

- Based on the Sn-Pb system
- For electronics: low melting T + easy flow

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

Solder materials (2)

- Based on the Sn-Pb system
- For plumbing: Pipes used to be made of Pb Solders were built up in thick deposits around joints
- \Rightarrow "Pasty" solder

Roman baths, Bath (GB) [A. Mertens]

Solder materials (3)

- Based on the Sn-Pb system
- For plumbing:

"pasty" solder = solid + liquid mixture

[M.F. Ashby and D.R.H. Jones, Engineering Materials, vol. 2]

Solder materials (4)

- Boiler in model steam engines High service T
 - \Rightarrow Ag-based soft solder (T_{melting} ~600°C)
 - \Rightarrow High Pb-content soft solder

Solder materials (5)

Tab	e	4.1	Properties	of	common	solders
-----	---	-----	------------	----	--------	---------

	Туре	Composition (wt%)	Melting range (°C)	Typical uses
Pb	Soft; eutectic (free-flowing)	62 Sn + 38 Pb	183	Electronic assemblies.
	Soft; general-purpose (moderately pasty)	50 Sn + 50 Pb	183-212	Joints in copper water systems; sheet metal work.
	Soft; plumbers' (pasty)	35 Sn + 65 Pb	183-244	Wiped joints; car body filling.
	Soft; high-melting	5 Sn + 1.5 Ag	296-301	Higher temperatures.
	(free flowing)	+ 93.5 Pb		
Ag	Silver; eutectic	42 Ag + 19 Cu	610-620	High-strength; high-temperature.
	(free-flowing)	+ 16 Zn + 25 Cd		
	Silver; general-purpose	38 Ag + 20 Cu	605-650	High-strength; high-temperature.
	(pasty)	+ 22 Zn + 20 Cd		

Summary

- Materials selection $\Rightarrow \neq$ criteria
 - Properties (physical, mechanical...)
 - Cost
- Some properties are **structure**-sensitive
 - Chemical composition
 - Processing method (deformation, heat treatments...)

\Rightarrow Understand/describe the structure of a material

- Equilibrium (phase diagram) today
- Out-of-equilibrium next week